Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

NO binding to the T-state of human hemoglobin (HbA) induces the cleavage of the proximal His bonds to the heme iron in the α-chains, whereas it leaves the β-hemes hexacoordinated. The structure of the nitrosylated T-state of the W37Eβ mutant (W37E) shows that the Fe-His87α bond remains intact. Exactly how mutation affects NO binding and why tension is apparent only in HbA α-heme remains to be elucidated. By means of density functional theory electronic structure calculations and classical molecular dynamics simulations we provide an explanation for the poorly understood NO binding properties of HbA and its W37E mutant. The data suggest an interplay between electronic effects, tertiary structure and hydration site modifications in determining the tension in the NO-ligated T-state HbA α-chain. © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Molecular basis of the NO trans influence in quaternary T-state human hemoglobin: A computational study
Autor:Petruk, A.A.; Vergara, A.; Estrin, D.; Merlino, A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, University of Buenos Aires, Buenos Aires, Argentina
Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126 Napoli, Italy
Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, 80100 Napoli, Italy
Palabras clave:Molecular dynamics; Nitric oxide; Nitrosylhemoglobin; heme; hemoglobin; hemoglobin alpha chain; hemoglobin beta chain; nitric oxide; article; controlled study; density functional theory; hydration; ligand binding; molecular dynamics; nitrosylation; priority journal; protein conformation; protein tertiary structure; Molecular dynamics; Nitric oxide; Nitrosylhemoglobin; Hemoglobins; Humans; Molecular Dynamics Simulation; Nitric Oxide; Protein Structure, Quaternary
Año:2013
Volumen:587
Número:15
Página de inicio:2393
Página de fin:2398
DOI: http://dx.doi.org/10.1016/j.febslet.2013.06.006
Título revista:FEBS Letters
Título revista abreviado:FEBS Lett.
ISSN:00145793
CODEN:FEBLA
CAS:heme, 14875-96-8; hemoglobin, 9008-02-0; nitric oxide, 10102-43-9; Hemoglobins; Nitric Oxide, 10102-43-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00145793_v587_n15_p2393_Petruk

Referencias:

  • Stamler, J.S., Singel, D.J., Loscalzo, J., Biochemistry of nitric oxide and its redox-activated forms (1992) Science, 258, pp. 1898-1902
  • Gladwin, M.T., Kim-Shapiro, D.B., Vascular biology: Nitric oxide caught in traffic (2012) Nature, 491, pp. 344-345
  • Tomasian, D., Keaney, J.F., Vita, J.A., Antioxidants and the bioactivity of endothelium-derived nitric oxide (2000) Cardiovasc. Res., 47, pp. 426-435
  • Radomski, M.W., Palmer, R.M., Moncada, S., Characterization of the l-arginine/nitric oxide pathway in human platelets (1990) Br. J. Pharmacol., 101, pp. 325-328
  • Pawloski, J.R., Swaminathan, R.V., Stamler, J.S., Cell-free and erythrocytic S-nitrosohemoglobin inhibits human platelet aggregation (1998) Circulation, 97, pp. 263-267
  • Gladwin, M.T., Crawford, J.H., Patel, R.P., The biochemistry of nitric oxide, nitrite, and hemoglobin: Role in blood flow regulation (2004) Free Radic. Biol. Med., 36, pp. 707-717
  • Gladwin, M.T., Lancaster Jr., J.R., Freeman, B.A., Schechter, A.N., Nitric oxide's reactions with hemoglobin: A view through the SNO-storm (2003) Nat. Med., 9, pp. 496-500
  • Maxwell, J.C., Caughey, W.S., An infrared study of nitric oxide bonding to heme B and hemoglobin A. Evidence for inositol hexaphosphate induced cleavage of proximal histidine to iron bonds (1976) Biochemistry, 15, pp. 388-396
  • Szabo, A., Perutz, M.F., Equilibrium between six- and five-coordinated hemes in nitrosylhemoglobin: Interpretation of electron spin resonance spectra (1976) Biochemistry, 15, pp. 4427-4428
  • Hille, R., Olson, J.S., Palmer, G., Spectral transitions of nitrosyl hemes during ligand binding to hemoglobin (1979) J. Biol. Chem., 254, pp. 12110-12120
  • Arcovito, A., Della Longa, S., Ligand binding intermediates of nitrosylated human hemoglobin induced at low temperature by X-ray irradiation (2011) Inorg. Chem., 50, pp. 9423-9429
  • Bonaventura, J., Lance, V., Nitric Oxide, invertebrates and hemoglobin (2001) Amer. Zool., 41, pp. 346-359
  • Jia, L., Bonaventura, C., Bonaventura, J., Stamler, J.S., S-nitrosohaemoglobin: A dynamic activity of blood involved in vascular control (1996) Nature, 380, pp. 221-226
  • Eich, R.F., Mechanism of NO-induced oxidation of myoglobin and hemoglobin (1996) Biochemistry, 35, pp. 6976-6983
  • Cabrales, P., Han, G., Nacharaju, P., Friedman, A.J., Friedman, J.M., Reversal of hemoglobin-induced vasoconstriction with sustained release of nitric oxide (2011) Am. J. Physiol. Heart Circ. Physiol., 300, pp. H49-H56
  • Wang, D., In vivo reduction of cell-free methemoglobin to oxyhemoglobin results in vasoconstriction in canines (2013) Transfusion, , http://dx.doi.org/10.1111/trf.12162, [Epub ahead of print]
  • Stepuro, T.L., Zinchuk, V.V., Nitric oxide effect on the hemoglobin-oxygen affinity (2006) J. Physiol. Pharmacol., 57, pp. 29-38
  • Jensen, F.B., The dual roles of red blood cells in tissue oxygen delivery: Oxygen carriers and regulators of local blood flow (2009) J. Exp. Biol., 212, pp. 3387-3393
  • Funai, E.F., Davidson, A., Seligman, S.P., Finlay, T.H., S-nitrosohemoglobin in the fetal circulation may represent a cycle for blood pressure regulation (1997) Biochem. Biophys. Res. Commun., 239, pp. 875-877
  • Gow, A.J., Stamler, J.S., Reactions between nitric oxide and haemoglobin under physiological conditions (1998) Nature, 391, pp. 169-173
  • Chan, N.L., Kavanaugh, J.S., Rogers, P.H., Arnone, A., Crystallographic analysis of the interaction of nitric oxide with quaternary-T human hemoglobin (2004) Biochemistry, 43, pp. 118-132
  • Szabo, A., Barron, L.D., Letter: Resonance Raman studies of nitric oxide hemoglobin (1975) J. Am. Chem. Soc., 97, pp. 660-662
  • Perutz, M.F., Kilmartin, J.V., Nagai, K., Szabo, A., Simon, S.R., Influence of globin structures on the state of the heme. Ferrous low spin derivatives (1976) Biochemistry, 15, pp. 378-387
  • Perutz, M.F., Regulation of oxygen affinity of hemoglobin (1979) Annu. Rev. Biochem., 48, pp. 327-386
  • Mingos, D.M.P., A general bonding model for linear and bent transition metal-nitrosyl complexes (1973) Inorg. Chem., 12, pp. 1209-1211
  • Hoffmann, R.M., Chen, M.L., Elian, M., Rossi, A.R., Mingos, D.M.P., Pentacoordinate nitrosyls (1974) Inorg. Chem., 13, pp. 2666-2675
  • Boechi, L., Marti, M.A., Vergara, A., Sica, F., Mazzarella, L., Estrin, D.A., Merlino, A., Protonation of histidine 55 affects the oxygen access to heme in the alpha chain of the hemoglobin from the Antarctic fish Trematomus bernacchii (2011) IUBMB Life, 63, pp. 175-182
  • Balsamo, A., Sannino, F., Merlino, A., Parrilli, E., Tutino, M.L., Mazzarella, L., Vergara, A., Role of the tertiary and quaternary structure in the formation of bis-histidyl adducts in cold-adapted hemoglobins (2012) Biochimie, 94, pp. 953-960
  • Merlino, A., Vergara, A., Sica, F., Aschi, M., Amadei, A., Di Nola, A., Mazzarella, L., Free-energy profile for CO binding to separated chains of human and Trematomus newnesi hemoglobin: Insights from molecular dynamics simulations and perturbed matrix method (2010) J. Phys. Chem. B, 114, pp. 7002-7008
  • Arroyo-Manez, P., Protein dynamics and ligand migration interplay as studied by computer simulation (2011) Biochim. Biophys. Acta, 1814, pp. 1054-1064
  • Bikiel, D.E., Modeling heme proteins using atomistic simulations (2006) Phys. Chem. Chem. Phys., 8, pp. 5611-5628
  • Capece, L., Boechi, L., Perissinotti, L.L., Arroyo-Manez, P., Bikiel, D.E., Smulevich, G., Marti, M.A., Estrin, D.A., Small ligand-globin interactions: Reviewing lessons derived from computer simulation (2013) Biochim. Biophys. Acta, , http://dx.doi.org/10.1016/j.bbapap.2013.02.038, [Epub ahead of print]
  • Crespo, A., Scherlis, D.A., Marti, M.A., Ordejon, P., Roitberg, A.E., Estrin, D.A., A DFT based QM-MM approach designed for the treatment of large molecular systems: Application to Chorismate mutase (2003) J. Phys. Chem. B, 49, pp. 13728-13736
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys. Rev. Lett., 18, pp. 3865-3868
  • Marti, M.A., Scherlis, D.A., Doctorovich, F.A., Ordejon, P., Estrin, D.A., Modulation of the NO trans effect in heme proteins: Implications for the activation of soluble guanylate cyclase (2003) J. Biol. Inorg. Chem., 8, pp. 595-600
  • Capece, L., Estrin, D.A., Marti, M.A., Dynamical characterization of the heme NO oxygen binding (HNOX) domain. Insight into soluble guanylate cyclase allosteric transition (2008) Biochemistry, 47, pp. 9416-9427
  • Capece, L., Marti, M.A., Crespo, A., Doctorovich, F., Estrin, D.A., Heme protein oxygen affinity regulation exerted by proximal effects (2006) J. Am. Chem. Soc., 128, pp. 12455-12461
  • Marti, M.A., Capece, L., Crespo, A., Doctorovich, F., Estrin, D.A., Nitric oxide interaction with cytochrome c′ and its relevance to guanylate cyclase. Why does the iron histidine bond break? (2005) J. Am. Chem. Soc., 127, pp. 7721-7728
  • Case, D.A., The Amber biomolecular simulation programs (2005) J. Comput. Chem., 26, pp. 1668-1688
  • Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Dinola, A., Haak, J.R., Molecular-dynamics with coupling to an external bath (1984) J. Chem. Phys., 81, pp. 3684-3690
  • Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes (1977) J. Comput. Phys., 23, pp. 327-341
  • Sasaki, J., Imamura, T., Yanase, T., Hemoglobin Hirose, a human hemoglobin variant with a substitution at the alpha1beta2 interface. Subunit dissociation and the equilibria and kinetics of ligand binding (1978) J. Biol. Chem., 253, pp. 87-94
  • Owen, M.C., Oekelford, P.A., Wells, R.M.G., Hb Howick [β37(C3)TRP→GLY]: A new high oxygen affinity variant of the α1β2 contact (1993) Hemoglobin, 17, pp. 513-521
  • Hub, J.S., Kubitzki, M.B., De Groot, B.L., Spontaneous quaternary and tertiary T-R transitions of human hemoglobin in molecular dynamics simulation (2010) PLoS Comput. Biol., 6, p. 1000774
  • Saito, M., Okazaki, I., A 45-ns molecular dynamics simulation of hemoglobin in water by vectorizing and parallelizing COSMOS90 on the earth simulator: Dynamics of tertiary and quaternary structures (2007) J. Comput. Chem., 28, pp. 1129-1136
  • Merlino, A., Fuchs, M.R., Pica, A., Balsamo, A., Dworkowski, F.S., Pompidor, G., Mazzarella, L., Vergara, A., Selective X-ray-induced NO photodissociation in haemoglobin crystals: Evidence from a Raman-assisted crystallographic study (2013) Acta Crystallogr. D Biol. Crystallogr., 69, pp. 137-140

Citas:

---------- APA ----------
Petruk, A.A., Vergara, A., Estrin, D. & Merlino, A. (2013) . Molecular basis of the NO trans influence in quaternary T-state human hemoglobin: A computational study. FEBS Letters, 587(15), 2393-2398.
http://dx.doi.org/10.1016/j.febslet.2013.06.006
---------- CHICAGO ----------
Petruk, A.A., Vergara, A., Estrin, D., Merlino, A. "Molecular basis of the NO trans influence in quaternary T-state human hemoglobin: A computational study" . FEBS Letters 587, no. 15 (2013) : 2393-2398.
http://dx.doi.org/10.1016/j.febslet.2013.06.006
---------- MLA ----------
Petruk, A.A., Vergara, A., Estrin, D., Merlino, A. "Molecular basis of the NO trans influence in quaternary T-state human hemoglobin: A computational study" . FEBS Letters, vol. 587, no. 15, 2013, pp. 2393-2398.
http://dx.doi.org/10.1016/j.febslet.2013.06.006
---------- VANCOUVER ----------
Petruk, A.A., Vergara, A., Estrin, D., Merlino, A. Molecular basis of the NO trans influence in quaternary T-state human hemoglobin: A computational study. FEBS Lett. 2013;587(15):2393-2398.
http://dx.doi.org/10.1016/j.febslet.2013.06.006