Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Osmolarity not only plays a key role in celluar homeostasis but also challenges cell survival. The molecular understanding of osmosis has not yet been completely achieved, and the discovery of aquaporins as molecular entities involved in water transport has caused osmosis to again become a focus of research. The main questions that need to be answered are the mechanism underlying the osmotic permeability coefficients and the extent to which aquaporins change our understanding of osmosis. Here, attempts to answer these questions are discussed. Critical aspects of the state of the state of knowledge on osmosis, a topic that has been studied since 19th century, are reviewed and integrated with the available information provided by in vivo, in vitro and in silico approaches. © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Aquaporins: Another piece in the osmotic puzzle
Autor:Alleva, K.; Chara, O.; Amodeo, G.
Filiación:Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
Center for Information Services and High Performance Computing (ZIH), Dresden University of Technology, Dresden, Germany
Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET, Universidad Nacional de la Plata (UNLP), La Plata, Argentina
Palabras clave:Aquaporin; Osmosis; Osmotic permeability; Phenomenological law; Water transport; aquaporin; bioinformatics; biophysics; brain edema; hydraulic permeability; lipid bilayer; membrane permeability; molecular interaction; nonhuman; nutrient uptake; osmosis; plant physiology; priority journal; protein function; protein structure; review; statistical analysis; transport kinetics; tumor growth; tumor vascularization; water transport; Animals; Aquaporins; Biophysical Phenomena; Cell Membrane Permeability; Computational Biology; History, 20th Century; History, 21st Century; Humans; Models, Biological; Osmolar Concentration; Osmosis; Plant Proteins; Water
Año:2012
Volumen:586
Número:19
Página de inicio:2991
Página de fin:2999
DOI: http://dx.doi.org/10.1016/j.febslet.2012.06.013
Título revista:FEBS Letters
Título revista abreviado:FEBS Lett.
ISSN:00145793
CODEN:FEBLA
CAS:aquaporin, 215587-75-0; Aquaporins; Plant Proteins; Water, 7732-18-5
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00145793_v586_n19_p2991_Alleva.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00145793_v586_n19_p2991_Alleva

Referencias:

  • Nielsen, C.H., Major intrinsic proteins in biomimetic membranes (2010) Adv. Exp. Med, Biol., 679, pp. 127-142
  • Dutrochet, H., (1828) Nouvelles Recherches sur l'Endosmose et l'Exosmose: Suivies de l'Application Expérimentale de Ces Actions Physiques À la Solution du Problème de l'Irritabilité Végétale et À la Détermination de la Cause de l'Ascension des Tiges et de la Descente des Raciness, , Paris
  • Pfeffer, W., Osmotische untersuchungen (1877) Studien Zur Zell Mechanic, , Wilhelm Engelmann Leipzig
  • Van'T Hoff, J.H., Die Rolle des OsmotischenDrukes in der AnalogiezwischenLosungen und Gasen (1887) Z. Phys. Chem., 1, pp. 481-493
  • Portella, G., De Groot, B.L., Determinants of water permeability through nanoscopic hydrophilic channels (2009) Biophys. J., 96, pp. 925-938
  • Finkelstein, A., (1987) Water Movement Through Lipid Bilayers, Pores, and Plasma Membranes: Theory and Reality, , John Wiley & Sons Ltd. New York
  • Ussing, H.H., Some aspects of the application of tracers inpermeability studies (1952) Adv. Enzymol. Relat. Subj. Biochem., 13, pp. 21-65
  • Pappenheimer, J.R., Passage of molecules through capillary walls (1953) Physiol. Revs., 33, p. 387
  • Kedem, O., Katchalsky, A., Thermodynamic analysis of the permeability of biological membranes to non-electrolytes (1958) Biochem. Biophys. Acta, 27, pp. 229-246
  • Kedem, O., Katchalsky, A., A physical interpretation of the phenomenological coefficients of membrane permeability (1961) J. Gen. Physiol., 45, pp. 143-179
  • Katchalsky, A., Curran, P.F., (1965) Non-equilibrium Thermodynamics in Biophysics, pp. 113-132. , Harvard University Press Cambridge, MA, USA
  • Staverman, A.J., The theory of measurement of osmotic pressure (1951) Rec. Trav. Chim., 70, pp. 344-352
  • Staverman, A.J., Non-equilibrium thermodynamics of membrane (1952) Trans. Faraday Soc., 48, pp. 176-185
  • Kirkwood, J.G., Transport of ions through biological membranes from the standpoint of irreversible thermodynamics (1954) Ion Transport Across Membranes, pp. 119-127. , H.T. Clark, Academic Press New York
  • Essig, A., Caplan, S.R., Water movement: Does thermodynamic interpretation distort reality? (1989) Am. J. Physiol., 256, pp. 694-C698
  • Finkelstein, A., Water movement: Does thermodynamic interpretation distort reality? (1989) Am. J. Physiol., 256, p. 699
  • Hammel, H.T., Forum on osmosis. I. Osmosis: Diminished solvent activity or enhanced solvent tension? (1979) Am. J. Physiol., 237, pp. 95-R107
  • Hammel, H.T., Forum on osmosis. V. Epilogue (1979) Am. J. Physiol., 237, pp. 123-R125
  • Soodak, H., Iberall, A., Forum on osmosis. IV. More on osmosis and diffusion (1979) Am. J. Physiol., 237, pp. 114-R122
  • Mauro, A., Forum on osmosis. III. Comments on Hammel and Scholander's solvent tension theory and its application to the phenomenon of osmotic flow (1979) Am. J. Physiol., 237, pp. 110-R113
  • Hildebrand, J.H., Forum on osmosis. II. A criticism of "solvent tension" in osmosis (1979) Am. J. Physiol., 237, pp. 108-R109
  • Kleinhans, F.W., Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism (1998) Cryobiology, 37, pp. 271-289
  • Benga, G., Birth of water channel proteins - The aquaporins (2003) Cell Biol. Int., 27, pp. 701-709
  • Stein, W.D., Danielli, J.F., Structure and function in red cell permeability (1956) Discuss. Faraday Soc., 21, pp. 238-251
  • Finkelstein, A., Anderson, O.S., The gramicidin A channel: A review of its permeability characteristics with special reference to the single-file aspect of transport (1981) J. Membr. Biol., 59, pp. 155-171
  • Ussing, H.H., Transport of electrolytes and water across epithelia (1965) Harvey Lect., 59, pp. 1-30
  • Rich, G.T., Shaafi, I., Romualdez, A., Solomon, A.K., Effect of osmolality on the hydraulic permeability coefficient of red cells (1968) J. Gen. Physiol., 52, pp. 941-954
  • Dainty, J., House, C.R., An examination of the evidence for membrane pores in frog skin (1966) J. Physiol., 185, pp. 172-184
  • Parisi, M., Bourguet, J., Water channels in animal cells: A widespread structure? (1985) Biol. Cell, 55, pp. 155-157
  • Sidel, V.W., Solomon, A.K., Entrance of water into human red cells under an osmotic pressure gradient (1957) J. Gen. Physiol., 41, pp. 243-257
  • Paganelli, C.V., Solomon, A.K., The rate of exchange of tritiated water across the human red cell membrane (1957) J. Gen. Physiol., 41, pp. 259-277
  • MacEy, R.I., Farmer, R.E., Inhibition of water and solute permeability in human red cells (1970) Biochim. Biophys. Acta, 211, pp. 104-106
  • Benga, G., Popescu, O., Borza, V., Pop, V.I., Muresan, A., Mocsy, I., Brain, A., Wrigglesworth, J.M., Water permeability in human erythrocytes: Identification of membrane proteins involved in water transport (1986) Eur. J. Cell Biol., 41, pp. 252-262
  • Benga, G., Popescu, O., Pop, V.I., Holmes, R.P., P-(Chloromercuri)benzenesulfonate binding by membrane proteins and the inhibition of water transport in human erythrocytes (1986) Biochemistry, 25, pp. 1535-1538
  • Parisi, M., Montoreano, R., Chevalier, J., Bourguet, J., Cellular pH and water permeability control in frog urinary bladder. A possible action on the water pathway (1981) Biochem. Biophys. Acta, 648, pp. 267-274
  • Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Luu, D.T., Bligny, R., Maurel, C., Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins (2003) Nature, 425, pp. 393-397
  • Alleva, K., Niemietz, C.M., Sutka, M., Maurel, C., Parisi, M., Tyerman, S.D., Amodeo, G., Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations (2006) J. Exp. Bot., 57, pp. 609-621
  • Zhang, R., Logee, K.A., Verkman, A.S., Expression of mRNA coding for kidney and red cell water channels in Xenopus oocytes (1990) J. Biol. Chem., 265, pp. 15375-15378
  • Parisi, M., Dorr, R.A., Ozu, M., Toriano, R., From membrane pores to aquaporins: 50 years measuring water fluxes (2007) J. Biol. Phys., 33, pp. 5-6
  • Pao, G.M., Wu, L.F., Johnson, K.D., Höfte, H., Chrispeels, M.J., Sweet, G., Sandal, N.N., Evolution of the MIP family of integral membrane transport proteins (1991) Mol. Microbiol., 5, pp. 33-37
  • Gorin, M.B., Yancey, S.B., Cline, J., Revel, J.P., Horwitz, J., The major intrinsic protein (MIP) of the bovine lens fiber membrane: Characterization and structure based on cDNA cloning (1984) Cell, 39, pp. 49-59
  • Sandal, N.N., Marcker, K.A., Soybean nodulin 26 is homologous to the major intrinsic protein of the bovine lens fiber membrane (1988) Nucleic Acids Res., 19, p. 9347
  • Muramatsu, S., Mizuno, T., Nucleotide sequence of the region encompassing the glpKF operon and its upstream region containing a bent DNA sequence of Escherichia coli (1989) Nucleic Acids Res., 17, p. 4378
  • Johnson, K.D., Höfte, H., Chrispeels, M.J., An intrinsic tonoplast protein of protein storage vacuoles in seeds is structurally related to a bacterial solute transporter (GIpF) (1990) Plant Cell, 6, pp. 525-532
  • Rao, Y., Jan, L.Y., Jan, Y.N., Similarity of the product of the Drosophila neurogenic gene big brain to transmembrane channel proteins (1990) Nature, 345, pp. 163-167
  • Smith, C.P., Chater, K.F., Cloning and transcription analysis of the entire glycerol utilization (gylABX) operon of Streptomyces coelicolor A3 (2) and identification of a closely associated transcription unit (1998) Mol. Gen. Genet., 211, pp. 129-137
  • Baker, M.E., Saier Jr., M.H., A common ancestor for bovine lens fiber major intrinsic protein, soybean nodulin-26 protein, and E. coli glycerol facilitator (1990) Cell, 26, pp. 185-186
  • Preston, G.M., Agre, P., Isolation of the cDNA for erythrocyte integral membrane protein of 28 kD: Member of an ancient channel family (1991) Proc. Natl. Acad. Sci. USA, 88, pp. 11110-11114
  • Agre, P., The aquaporin water channels (2006) Proc. Am. Thorac. Soc., 3, pp. 5-13
  • Agre, P., Interview: A Conversation with Peter Agre (2009) By Claudia Dreifus, , The New York Times
  • Preston, G.M., Carroll, T.P., Guggino, W.B., Agre, P., Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein (1992) Science, 256, pp. 385-387
  • Agre, P., Preston, G.M., Smith, B.L., Jung, J.S., Raina, S., Moon, C., Guggino, W.B., Nielsen, S., Aquaporin CHIP: The archetypal molecular water channel (1993) Am. J. Physiol., 265, pp. 463-476
  • Verkman, A.S., Mitra, A.K., Structure and function of aquaporin water channels (2000) Am. J. Physiol. Renal Physiol., 278, pp. 13-F28
  • Johanson, U., Gustavsson, S., A new subfamily of major intrinsic proteins in plants (2002) Mol. Biol. Evol., 19, pp. 456-461
  • Wallace, I.S., Roberts, D.M., Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter (2004) Plant Phys., 135, pp. 1059-1068
  • Wudick, M.M., Luu, D.T., Maurel, C., A look inside: Localization patterns and functions of intracellular plant aquaporins (2009) New Phytol., 184, pp. 289-302
  • Finn, R.N., Cerdà, J., Aquaporin evolution in fishes (2011) Front Physiol., 2, p. 44
  • Soto, G., Alleva, K., Amodeo, G., Muschietti, J., Ayub, N., New insight into the evolution of aquaporins from flowering plants and vertebrates: Orthologous identification and functional transfer is possible Gene, , doi:10.1016/j.gene.2012.04.021 (in press) doi
  • Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J.B., Engel, A., Fujiyoshi, Y., Structural determinants of water permeation through aquaporin-1 (2000) Nature, 407, pp. 599-605
  • Fu, D., Libson, A., Miercke, L.J.W., Weitzman, C., Nollert, P., Krucinski, J., Stroud, R.M., Structure of a glycerol conducting channel and the basis for its selectivity (2000) Science, 290, pp. 481-486
  • Sui, H., Han, B., Lee, J., Walian, P., Jap, B., Structural basis of water-specific transport through the AQP1 water channel (2001) Nature, 414, pp. 872-878
  • Tajkhorshid, E., Nollert, P., Jensen, M., Miercke, L., O'Connell, J., Stroud, R., Schulten, K., Control of the selectivity of the aquaporin water channel family by global orientational tuning (2002) Science, 296, pp. 525-530
  • De Groot, B.L., Frigato, T., Helms, V., Grubmuller, H., The mechanism of proton exclusion in the aquaporin-1 water channel (2003) J. Mol. Biol., 333, pp. 279-293
  • Hub, J.S., Grubmüller, H., De Groot, B.L., Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? (2009) Handb. Exp. Pharmacol., 190, pp. 57-76
  • Hashido, M., Kidera, A., Ikeguchi, M., Water transport in aquaporins: Osmotic permeability matrix analysis of molecular dynamics simulations (2007) Biophys. J., 93, pp. 373-385
  • Chara, O., McCarthy, A.N., Ferrara, C.G., Caffarena, E.R., Grigera, J.R., Water behavior in the neighborhood of hydrophilic and hydrophobic membranes: Lessons from molecular dynamics simulations (2009) Physica A, 388, pp. 4551-4559
  • Gerbeau, P., Amodeo, G., Henzler, T., Santoni, V., Ripoche, P., Maurel, C., The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH (2002) Plant J., 1, pp. 71-81
  • Németh-Cahalan, K.L., Kalman, K., Hall, J.E., Molecular basis of pH and Ca2+ regulation of aquaporin water permeability (2004) J. Gen. Physiol., 123, pp. 573-580
  • Alleva, K., Marquez, M., Villarreal, N., Mut, P., Bustamante, C., Bellati, J., Martínez, G., Amodeo, G., Cloning, functional characterization, and co-expression studies of a novel aquaporin (FaPIP2;1) of strawberry fruit (2010) J. Exp. Bot., 61, pp. 3935-3945
  • Bellati, J., Alleva, K., Soto, G., Vitali, V., Jozefkowicz, C., Amodeo, G., Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression (2010) Plant Mol. Biol., 74, pp. 105-118
  • Johansson, I., Larsson, C., Ek, B., Kjellbom, P., The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential (1996) Plant Cell, 8, pp. 1181-1191
  • Johansson, I., Karlsson, M., Shukla, V.K., Chrispeels, M.J., Larsson, C., Kjellbom, P., Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation (1998) Plant Cell, 10, pp. 451-460
  • Guenther, J.F., Chanmanivone, N., Galetovic, M.P., Wallace, I.S., Cobb, J.A., Roberts, D.M., Phosphorylation of soybean Nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals (2003) Plant Cell, 15, pp. 981-991
  • Azad, A.K., Sawa, Y., Ishikawa, T., Shibata, H., Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals (2004) Biosci. Biotechnol. Biochem., 68, pp. 1170-1174
  • Zhang, R., Van Hoek, A.N., Biwersi, J., Verkman, A.S., A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28k (1993) Biochemistry, 32, pp. 2938-2941
  • Németh-Cahalan, K.L., Kalman, K., Froger, A., Hall, J.E., Zinc modulation of water permeability reveals that aquaporin 0 functions as a cooperative tetramer (2007) J. Gen. Physiol., 5, pp. 457-464
  • Yukutake, Y., Hirano, Y., Suematsu, M., Yasui, M., Rapid and reversible inhibition of aquaporin-4 by zinc (2009) Biochemistry, 48, pp. 12059-12061
  • Hedfalk, K., Törnroth-Horsefield, S., Nyblom, M., Johanson, U., Kjellbom, P., Neutze, R., Aquaporin gating (2006) Curr. Opin. Struct. Biol., 16, pp. 447-456
  • Petrovic, M.M., Vales, K., Stojan, G., Basta-Jovanović, G., Mitrović, D.M., Regulation of selectivity and translocation of aquaporins: An update (2006) Folia Biol., 52, pp. 173-180
  • Conner, M.T., Conner, A.C., Bland, C.E., Taylor, L.H., Brown, J.E., Parri, H.R., Bill, R.M., Rapid aquaporin translocation regulates cellular water flow: The mechanism of hypotonicity-induced sub-cellular localization of the aquaporin 1 water channel (2012) J. Biol. Chem., p. 287. , 11516-11525
  • Maurel, C., Verdoucq, L., Luu, D.-T., Santoni, V., Plant aquaporins: Membrane channels with multiple integrated functions (2008) Annu. Rev. Plant Biol., 59, pp. 595-624
  • Fetter, K., Wilder, V.V., Moshelion, M., Chaumont, F., Interactions between plasma membrane aquaporins modulate their water channel activity (2004) Plant Cell, 1, pp. 215-228
  • Zelazny, E., Borst, J.W., Muylaert, M., Batoko, H., Hemminga, M.A., Chaumont, F., FRET imaging in living maize cells reveals that plasmamembrane aquaporins interact to regulate their subcellular localization (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 12359-12364
  • Luu, D.T., Martini Ère, A., Sorieul, M., Runions, J., Maurel, C., Fluorescence recovery after photobleaching reveals high cycling dynamics of plasma membrane aquaporinsin Arabidopsis roots under salt stress (2012) Plant J., 69, pp. 894-905
  • Beitz, E., Aquaporins. handbook of experimental pharmacology (2009) Universität Kiel Pharmazeutisches Inst., , Gutenbergstr, Springer-Verlag, Berlin
  • Ford, P., Rivarola, V., Chara, O., Blot-Chabaud, M., Cluzeaud, F., Farman, N., Parisi, M., Capurro, C., Volume regulation in cortical collecting duct cells: Role of AQP2 (2005) Biol. Cell, 97, pp. 687-697
  • Marinelli, R., Tietz, P.S., Caride, A.J., Huang, B.Q., Larusso, N.F., Water transporting properties of hepatocyte basolateral and canalicular plasma membrane domains (2003) J. Biol. Chem., 278, pp. 43157-43162
  • Calamita, G., Gena, P., Ferri, D., Rosito, A., Rojek, A., Nielsen, S., Marinelli, R.A., Svelto, M., Biophysical assessment of aquaporin-9 as principal facilitative pathway in mouse liver import of glucogenetic glycerol (2012) Biol. Cell, , doi:10.1111/boc.20110006, doi
  • Saadoun, S., Papadopoulos, M.C., Hara-Chikuma, M., Verkman, A.S., Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption (2005) Nature, 434, pp. 786-792
  • Papadopoulos, M.C., Saadoun, S., Verkman, A.S., Aquaporins and cell migration (2008) Pflugers Arch., 456, pp. 693-700
  • Manley, G.T., Fujimura, M., Ma, T., Noshita, N., Filiz, F., Boll En, A.W., Chan, P., Verkman, A.S., Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke (2000) Nature Med., 6, pp. 159-163
  • Maurel, C., Plant aquaporins: Novel functions and regulation properties (2007) FEBS Lett., 581 (12), pp. 2227-2236
  • Martre, P., Morillon, R., Barrieu, F., North, G.B., Nobel, P.S., Chrispeels, M.J., Plasma membrane aquaporins play a significant role during recovery from water deficit (2002) Plant Phys., 130, pp. 2101-2110
  • Siefritz, F., Tyree, M.T., Lovisolo, C., Schubert, A., Kaldenhoff, R., PIP1 plasma membrane aquaporins in tobacco: From cellular effects to function in plants (2002) Plant Cell, 14, pp. 869-876
  • Javot, H., Lauvergeat, V., Santoni, V., Martin-Laurent, F., Güç lü, J., Vinh, J., Heyes, J., Maurel, C., Role of a single aquaporin isoform in root water uptake (2003) Plant Cell, 15, pp. 509-522
  • Moshelion, M., Becker, D., Biela, A., Uehlein, N., Hedrich, R., Otto, B., Levi, H., Kaldenhoff, R., Plasma membrane aquaporins in the motor cells of Samanea saman: Diurnal and circadian regulation (2002) Plant Cell, 3, pp. 727-739
  • Vander Willigen, C., Postaire, O., Tournaire-Roux, C., Boursiac, Y., Maurel, C., Expression and inhibition of aquaporins in germinating Arabidopsis seeds (2006) Plant Cell Physiol., 47, pp. 1241-1250
  • Soto, G., Alleva, K., Mazzella, M.A., Amodeo, G., Muschietti, J.P., AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea (2008) FEBS Lett., 582, pp. 4077-4082
  • Mut, P., Bustamante, C., Martínez, G., Alleva, K., Sutka, M., Civello, M., Amodeo, G., A fruit-specific plasma membrane aquaporin subtype PIP1;1 is regulated during strawberry (Fragaria x ananassa) fruit ripening (2008) Physiol Plant., 132, pp. 538-551
  • Ehlert, C., Maurel, C., Tardieu, F., Simonneau, T., Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration (2009) Plant Phys., 150, pp. 1093-1104
  • Maurel, C., Simonneau, T., Sutkam, M., The significance of roots as hydraulic rheostats (2010) J. Exp. Bot., 61, pp. 3191-3198
  • Takano, J., Motoko Wada, M., Ludewig, U., Schaaf, G., Von Wiren, N., Takano, T.F., The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation (2006) Plant Cell, 18, pp. 1498-1509
  • Calamita, G., Aquaporins: Highways for cells to recycle water with the outside world (2005) Biol. Cell, 97, pp. 351-353. , [Reproduced with permission© Portland Press Ltd]
  • MacAulay, N., Hamann, S., Zeuthen, T., Water transport in the brain: Role of cotransporters (2004) Neuroscience, 129, pp. 1031-1044
  • Fischbarg, J., Kunyan, K., Vera, J.C., Arant, S., Silverstein, S., Loike, J., Rosen, O.M., Glucose transporters serve as water channels (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 3244-3324
  • Chara, O., Ford, P., Rivarola, V., Parisi, M., Capurro, C., Asymmetry in the osmotic response of a rat cortical collecting duct cell line: Role of aquaporin-2 (2005) J. Membr. Biol., 207, pp. 143-150
  • Kiil, F., Mechanism of osmosis (1982) Kidney Int., 21, pp. 303-308
  • Kargol, M., Kargol, A., Mechanistic formalism for membrane transport generated by osmotic and mechanical pressure (2003) Gen. Physiol. Biophys., 22, pp. 51-68
  • Raghunathan, A., Aluru, N., Molecular understanding of osmosis in semipermeable membranes (2006) Phys. Rev. Lett., 97, pp. 1-4
  • Curry, M.R., Shachar-Hill, B., Hill, A.E., Single water channels of aquaporin-1 do not obey the Kedem-Katchalsky equations (2001) J. Membr. Biol., 181, pp. 115-123
  • Hill, A.E., Shachar-Hill, B., Shachar-Hill, Y., What are aquaporins for? (2004) J. Membr. Biol., 197, pp. 1-32
  • Van 'T Hoff, J.H., Osmotic pressure and chemical equilibrium (1966) From Nobel Lectures, Chemistry, pp. 1901-1921. , Elsevier, Amsterdam
  • Agre, P., (2008) Nobel Lectures in Chemistry, , Ahlberg, P. (Ed.) 2001-2005. Göteborg University, Sweden

Citas:

---------- APA ----------
Alleva, K., Chara, O. & Amodeo, G. (2012) . Aquaporins: Another piece in the osmotic puzzle. FEBS Letters, 586(19), 2991-2999.
http://dx.doi.org/10.1016/j.febslet.2012.06.013
---------- CHICAGO ----------
Alleva, K., Chara, O., Amodeo, G. "Aquaporins: Another piece in the osmotic puzzle" . FEBS Letters 586, no. 19 (2012) : 2991-2999.
http://dx.doi.org/10.1016/j.febslet.2012.06.013
---------- MLA ----------
Alleva, K., Chara, O., Amodeo, G. "Aquaporins: Another piece in the osmotic puzzle" . FEBS Letters, vol. 586, no. 19, 2012, pp. 2991-2999.
http://dx.doi.org/10.1016/j.febslet.2012.06.013
---------- VANCOUVER ----------
Alleva, K., Chara, O., Amodeo, G. Aquaporins: Another piece in the osmotic puzzle. FEBS Lett. 2012;586(19):2991-2999.
http://dx.doi.org/10.1016/j.febslet.2012.06.013