Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The retrograde transport of nerve growth factor (NGF) in neurite-like processes of living differentiated PC12 cells was studied using streptavidin-quantum dots (QDs) coupled to monobiotin-NGF. These reagents were active in differentiation, binding, internalization, and transport. Ten-35% of the QD-NGF-receptor complexes were mobile. Quantitative single particle tracking revealed a bidirectional step-like motion, requiring intact microtubules, with a net retrograde velocity of 0.054 ± 0.020 μm/s. Individual runs had a mean velocity of ∼0.15 μm/s at room temperature, and the run times were exponentially distributed. The photostability and brightness of QDs permit extended real-time analysis of individual QDbNGF- receptor complexes trafficking within neurites. © 2007 Federation of European Biochemical Societies.

Registro:

Documento: Artículo
Título:Quantitative single particle tracking of NGF-receptor complexes: Transport is bidirectional but biased by longer retrograde run lengths
Autor:Echarte, M.M.; Bruno, L.; Arndt-Jovin, D.J.; Jovin, T.M.; Pietrasanta, L.I.
Filiación:Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon I, Ciudad Universitaria, Intendente Guiraldes 2160, C1428EHA Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon I, Ciudad Universitaria, Intendente Guiraldes 2160, C1428EHA Buenos Aires, Argentina
Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37070 Göttingen, Germany
Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Buenos Aires, Argentina
Palabras clave:Live cell imaging; Neurotrophins; NGF; Quantum dots; Retrograde axonal transport; nerve growth factor receptor; quantum dot; streptavidin; animal cell; article; cell differentiation; cell labeling; controlled study; imaging; internalization; microtubule; mouse; neurite; nonhuman; priority journal; protein binding; protein transport; quantitative assay; rat; room temperature; velocity; Animals; Chromogenic Compounds; Endocytosis; Microtubules; Multiprotein Complexes; Neurites; PC12 Cells; Protein Binding; Protein Transport; Quantum Dots; Rats; Receptor, Nerve Growth Factor; Sensitivity and Specificity; Staining and Labeling; Substrate Specificity
Año:2007
Volumen:581
Número:16
Página de inicio:2905
Página de fin:2913
DOI: http://dx.doi.org/10.1016/j.febslet.2007.05.041
Título revista:FEBS Letters
Título revista abreviado:FEBS Lett.
ISSN:00145793
CODEN:FEBLA
CAS:streptavidin, 9013-20-1; Chromogenic Compounds; Multiprotein Complexes; Receptor, Nerve Growth Factor
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00145793_v581_n16_p2905_Echarte.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00145793_v581_n16_p2905_Echarte

Referencias:

  • Levi-Montalcini, R., The nerve growth factor 35 years later (1987) Science, 237, pp. 1154-1162
  • Yuen, E.C., Mobley, W.C., Therapeutic applications of neurotrophic factors in disorders of motor neurons and peripheral nerves (1995) Mol. Med. Today, 1, pp. 278-286
  • Campenot, R.B., MacInnis, B.L., Retrograde transport of neurotrophins: fact and function (2004) J. Neurobiol., 58, pp. 217-229
  • Di Fiore, P.P., De Camilli, P., Endocytosis and signaling: an inseparable partnership (2001) Cell, 106, pp. 1-4
  • Delcroix, J.D., Valletta, J.S., Wu, C.B., Hunt, S.J., Kowal, A.S., Mobley, W.C., NGF signaling in sensory neurons: evidence that early endosomes carry NGF retrograde signals (2003) Neuron, 39, pp. 69-84
  • Grimes, M.L., Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes (1996) J. Neurosci., 16, pp. 7950-7964
  • Hendry, I.A., Iversen, L.L., Reduction in concentration of nerve growth factor in mice after sialectomy and castration (1973) Nature, 243, pp. 500-504
  • Hendry, I.A., Stockel, K., Thoenen, H., Iversen, L.L., Retrograde axonal transport of nerve growth factor (1974) Brain Res., 68, pp. 103-121
  • Vallee, R.B., Shpetner, H.S., Paschal, B.M., The role of dynein in retrograde axonal transport (1989) Trends Neurosci., 12, pp. 66-70
  • Tani, T., Miyamoto, Y., Fujimori, K.E., Taguchi, T., Yanagida, T., Sako, Y., Harada, Y., Trafficking of a ligand-receptor complex on the growth cones as an essential step for the uptake of nerve growth factor at the distal end of the axon: a single-molecule analysis (2005) J. Neurosci., 25, pp. 2181-2191
  • Vu, T.Q., Maddipati, R., Blute, T.A., Nehilla, B.J., Nusblat, L., Desai, T.A., Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth (2005) Nano Lett., 5, pp. 603-607
  • Lidke, D.S., Lidke, K.A., Rieger, B., Jovin, T.M., Arndt-Jovin, D.J., Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors (2005) J. Cell Biol., 170, pp. 619-626
  • Lidke, D.S., Nagy, P., Heintzmann, R., Arndt-Jovin, D.J., Post, J.N., Grecco, H.E., Jares-Erijman, E.A., Jovin, T.M., Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction (2004) Nat. Biotechnol., 22, pp. 198-203
  • Dahan, M., Levi, S., Luccardini, C., Rostaing, P., Riveau, B., Triller, A., Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking (2003) Science, 302, pp. 442-445
  • Smith, A., Gao, X., Nie, S., Quantum-dot nanocrystals for in vivo molecular and cellular imaging (2004) Photochem. Photobiol., 80, pp. 377-385
  • Lehmann, M.J., Sherer, N.M., Marks, C.B., Pypaert, M., Mothes, W., Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells (2005) J. Cell Biol., 170, pp. 317-325
  • Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., Nie, S., In vivo molecular and cellular imaging with quantum dots (2005) Curr. Opin. Biotechnol., 16, pp. 63-72
  • Fu, A., Gu, W., Larabell, C., Alivisatos, A.P., Semiconductor nanocrystals for biological imaging (2005) Curr. Opin. Neurobiol., 15, pp. 568-575
  • Bronfman, F.C., Tcherpakov, M., Jovin, T.M., Fainzilber, M., Ligand-induced internalization of the p75 neurotrophin receptor: a slow route to the signaling endosome (2003) J. Neurosci., 23, pp. 3209-3220
  • Grecco, H.E., Lidke, K.A., Heintzmann, R., Lidke, D.S., Spagnuolo, C., Martinez, O.E., Jares-Erijman, E.A., Jovin, T.M., Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells (2004) Microsc. Res. Tech., 65, pp. 169-179
  • Buxser, S., Decker, D., Ruppel, P., Relationship among types of nerve growth factor receptors on PC12 Cells (1990) J. Biol. Chem., 265, pp. 12701-12710
  • Bernd, P., Greene, L.A., Association of I125 nerve growth factor with PC12 pheochromocytoma cells: evidence for Internalization via high-affinity receptors only and for long-term regulation by nerve growth factor of both high-affinity and low-affinity receptors (1984) J. Biol. Chem., 259, pp. 5509-5516
  • Jullien, J., Guili, V., Reichardt, L.F., Rudkin, B.B., Molecular kinetics of nerve growth factor receptor trafficking and activation (2002) J. Biol. Chem., 277, pp. 38700-38708
  • Mahadeo, D., Kaplan, L., Chao, M.V., Hempstead, B.L., High-affinity nerve growth-factor binding displays a faster rate of association than P140(Trk) binding - implications for multisubunit polypeptide receptors (1994) J. Biol. Chem., 269, pp. 6884-6891
  • Zapf-Colby, A., Olefsky, J.M., Nerve growth factor processing and trafficking events following TrkA-mediated endocytosis (1998) Endocrinology, 139, pp. 3232-3240
  • Ure, D.R., Campenot, R.B., Retrograde transport and steady-state distribution of I125 nerve growth factor in rat sympathetic neurons in compartmented cultures (1997) J. Neurosci., 17, pp. 1282-1290
  • Watson, F.L., Heerssen, H.M., Moheban, D.B., Lin, M.Z., Sauvageot, C.M., Bhattacharyya, A., Pomeroy, S.L., Segal, R.A., Rapid nuclear responses to target-derived neurotrophins require retrograde transport of ligand-receptor complex (1999) J. Neurosci., 19, pp. 7889-7900
  • Heerssen, H.M., Pazyra, M.F., Segal, R.A., Dynein motors transport activated Trks to promote survival of target-dependent neurons (2004) Nat. Neurosci., 7, pp. 596-604
  • Yano, H., Lee, F.S., Kong, H., Chuang, J.-Z., Arevalo, J.C., Perez, P., Sung, C.-H., Chao, M.V., Association of Trk neurotrophin receptors with components of the cytoplasmic dynein motor (2001) J. Neurosci., 21 (RC 125), pp. 1-7
  • Nakata, T., Terada, S., Hirokawa, N., Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons (1998) J. Cell Biol., 140, pp. 659-674
  • Lalli, G., Schiavo, G., Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR (2002) J. Cell Biol., 156, pp. 233-240
  • Wang, Z., Khan, S., Sheetz, M., Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin (1995) Biophys. J., 69, pp. 2011-2023
  • Gross, S.P., Welte, M.A., Block, S.M., Wieschaus, E.F., Dynein-mediated cargo transport in vivo: a switch controls travel distance (2000) J. Cell Biol., 148, pp. 945-955
  • Hirakawa, E., Higuchi, H., Toyoshima, Y.Y., Processive movement of single 22S dynein molecules occurs only at low ATP concentrations (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 2533-2537
  • Jullien, J., Guili, V., Derrington, E.A., Darlix, J.L., Reichardt, L.F., Rudkin, B.B., Trafficking of TrkA-green fluorescent protein chimerae during nerve growth factor-induced differentiation (2003) J. Biol. Chem., 278, pp. 8706-8716
  • Mallik, R., Carter, B.C., Lex, S.A., King, S.J., Gross, S.P., Cytoplasmic dynein functions as a gear in response to load (2004) Nature, 427, pp. 649-652
  • Hill, D.B., Plaza, M.J., Bonin, K., Holzwarth, G., Fast vesicle transport in PC12 neurites: velocities and forces (2004) Eur. Biophys. J. Biophys. Lett., 33, pp. 623-632
  • Block, S.M., Goldstein, L.S.B., Schnapp, B.J., Bead movement by single kinesin molecules studied with optical tweezers (1990) Nature, 348, pp. 348-352
  • Weible, M.W., Hendry, I.A., What is the importance of multivesicular bodies in retrograde axonal transport in vivo? (2004) J. Neurobiol., 58, pp. 230-243
  • Hirokawa, N., Takemura, R., Molecular motors and mechanisms of directional transport in neurons (2005) Nat. Rev. Neurosci., 6, pp. 201-214
  • Kural, C., Kim, H., Syed, S., Goshima, G., Gelfand, V.I., Selvin, P.R., Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? (2005) Science, 308, pp. 1469-1472
  • Levi, V., Serpinskaya, A.S., Gratton, E., Gelfand, V., Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors (2006) Biophys. J., 90, pp. 318-327
  • Bhattacharyya, A., Watson, F.L., Pomeroy, S.L., Zhang, Y.Z.Z., Stiles, C.D., Segal, R.A., High-resolution imaging demonstrates dynein-based vesicular transport of activated Trk receptors (2002) J. Neurobiol., 51, pp. 302-312
  • Rajan, S., Vu, T.Q., Quantum dots monitor TrkA receptor dynamics in the interior of neural PC12 cells (2006) Nano Lett., 6, pp. 2049-2059
  • Ross, J.L., Wallace, K., Shuman, H., Goldman, Y.E., Holzbaur, E.L., Processive bidirectional motion of dynein-dynactin complexes in vitro (2006) Nat. Cell Biol., 8, pp. 562-570
  • Nan, X., Sims, P.A., Chen, P., Xie, X.S., Observation of individual microtubule motor steps in living cells with endocytosed quantum dots (2005) J. Phys. Chem. B Condens. Matter Mater. Surf. Interfaces Biophys., 109, pp. 24220-24224
  • Alivisatos, P., The use of nanocrystals in biological detection (2004) Nat. Biotechnol., 22, pp. 47-52

Citas:

---------- APA ----------
Echarte, M.M., Bruno, L., Arndt-Jovin, D.J., Jovin, T.M. & Pietrasanta, L.I. (2007) . Quantitative single particle tracking of NGF-receptor complexes: Transport is bidirectional but biased by longer retrograde run lengths. FEBS Letters, 581(16), 2905-2913.
http://dx.doi.org/10.1016/j.febslet.2007.05.041
---------- CHICAGO ----------
Echarte, M.M., Bruno, L., Arndt-Jovin, D.J., Jovin, T.M., Pietrasanta, L.I. "Quantitative single particle tracking of NGF-receptor complexes: Transport is bidirectional but biased by longer retrograde run lengths" . FEBS Letters 581, no. 16 (2007) : 2905-2913.
http://dx.doi.org/10.1016/j.febslet.2007.05.041
---------- MLA ----------
Echarte, M.M., Bruno, L., Arndt-Jovin, D.J., Jovin, T.M., Pietrasanta, L.I. "Quantitative single particle tracking of NGF-receptor complexes: Transport is bidirectional but biased by longer retrograde run lengths" . FEBS Letters, vol. 581, no. 16, 2007, pp. 2905-2913.
http://dx.doi.org/10.1016/j.febslet.2007.05.041
---------- VANCOUVER ----------
Echarte, M.M., Bruno, L., Arndt-Jovin, D.J., Jovin, T.M., Pietrasanta, L.I. Quantitative single particle tracking of NGF-receptor complexes: Transport is bidirectional but biased by longer retrograde run lengths. FEBS Lett. 2007;581(16):2905-2913.
http://dx.doi.org/10.1016/j.febslet.2007.05.041