Artículo

Quintá, H.R.; Wilson, C.; Blidner, A.G.; González-Billault, C.; Pasquini, L.A.; Rabinovich, G.A.; Pasquini, J.M. "Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth" (2016) Experimental Neurology. 283:165-178
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Axonal growth cone collapse following spinal cord injury (SCI) is promoted by semaphorin3A (Sema3A) signaling via PlexinA4 surface receptor. This interaction triggers intracellular signaling events leading to increased hydrogen peroxide levels which in turn promote filamentous actin (F-actin) destabilization and subsequent inhibition of axonal re-growth. In the current study, we demonstrated that treatment with galectin-1 (Gal-1), in its dimeric form, promotes a decrease in hydrogen peroxide (H2O2) levels and F-actin repolimerization in the growth cone and in the filopodium of neuron surfaces. This effect was dependent on the carbohydrate recognition activity of Gal-1, as it was prevented using a Gal-1 mutant lacking carbohydrate-binding activity. Furthermore, Gal-1 promoted its own active ligand-mediated endocytosis together with the PlexinA4 receptor, through mechanisms involving complex branched N-glycans. In summary, our results suggest that Gal-1, mainly in its dimeric form, promotes re-activation of actin cytoskeleton dynamics via internalization of the PlexinA4/Gal-1 complex. This mechanism could explain, at least in part, critical events in axonal regeneration including the full axonal re-growth process, de novo formation of synapse clustering, axonal re-myelination and functional recovery of coordinated locomotor activities in an in vivo acute and chronic SCI model. Significance statement: Axonal regeneration is a response of injured nerve cells critical for nerve repair in human spinal cord injury. Understanding the molecular mechanisms controlling nerve repair by Galectin-1, may be critical for therapeutic intervention. Our results show that Galectin-1; in its dimeric form, interferes with hydrogen peroxide production triggered by Semaphorin3A. The high levels of this reactive oxygen species (ROS) seem to be the main factor preventing axonal regeneration due to promotion of actin depolymerization at the axonal growth cone. Thus, Galectin-1 administration emerges as a novel therapeutic modality for promoting nerve repair and preventing axonal loss. © 2016 Elsevier Inc.

Registro:

Documento: Artículo
Título:Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth
Autor:Quintá, H.R.; Wilson, C.; Blidner, A.G.; González-Billault, C.; Pasquini, L.A.; Rabinovich, G.A.; Pasquini, J.M.
Filiación:Departamento de Química Biológica, Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires, Buenos Aires, C1113AAD, Argentina
Laboratory of Cell and Neuronal Dymanics, Faculty of Sciences, Faculty of Sciences, Universidad de Chile, Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428, Argentina
The Buck Institute for Research on Aging, Novato, United States
Palabras clave:Axonal growth; Filamentous actin; Galectin-1; Hydrogen peroxide; PlexinA4; Semaphorin3A; Spinal cord injury; F actin; galectin 1; glycan; hydrogen peroxide; neuropilin; plexin; plexin A4; semaphorin 3A; unclassified drug; actin filament; actin polymerization; animal cell; animal experiment; animal model; Article; cell surface; controlled study; convalescence; disease model; embryo; endocytosis; filopodium; growth cone; in vivo study; internalization; male; molecular mechanics; molecular recognition; mouse; nerve cell; nerve fiber regeneration; nonhuman; priority journal; rat; remyelinization; spinal cord injury; synaptogenesis
Año:2016
Volumen:283
Página de inicio:165
Página de fin:178
DOI: http://dx.doi.org/10.1016/j.expneurol.2016.06.009
Título revista:Experimental Neurology
Título revista abreviado:Exp. Neurol.
ISSN:00144886
CODEN:EXNEA
CAS:F actin, 39409-31-9; galectin 1, 258495-34-0; hydrogen peroxide, 7722-84-1; neuropilin, 170084-36-3; semaphorin 3A, 167821-03-6, 516536-20-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00144886_v283_n_p165_Quinta

Referencias:

  • Antipenko, A., Himanen, J.P., van Leyen, K., Nardi-Dei, V., Lesniak, J., Barton, W.A., Rajashankar, K.R., Nikolov, D.B., Structure of the semaphorin-3A receptor binding module (2003) Neuron, 39, pp. 589-598
  • Bareyre, F.M., Kerschensteiner, M., Raineteau, O., Mettenleiter, T.C., Weinmann, O., Schwab, M.E., The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats (2004) Nat. Neurosci., 7, pp. 269-277
  • Belousov, V.V., Fradkov, A.F., Lukyanov, K.A., Staroverov, D.B., Shakhbazov, K.S., Terskikh, A.V., Lukyanov, S., Genetically encoded fluorescent indicator for intracellular hydrogen peroxide (2006) Nat. Methods, 3, pp. 281-286
  • Bergeron, Y., Chagniel, L., Bureau, G., Massicotte, G., Cyr, M., MTOR signaling contributes to motor skill learning in mice (2014) Front. Mol. Neurosci., 7, p. 26
  • Brambilla, R., Hurtado, A., Persaud, T., Esham, K., Pearse, D.D., Oudega, M., Bethea, J.R., Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury (2009) J. Neurochem., 110, pp. 765-778
  • Bregman, B.S., Spinal cord transplants permit the growth of serotonergic axons across the site of neonatal spinal cord transection (1987) Brain Res., 431, pp. 265-279
  • Bregman, B.S., Development of serotonin immunoreactivity in the rat spinal cord and its plasticity after neonatal spinal cord lesions (1987) Brain Res., 431, pp. 245-263
  • Chen, J., Wu, J., Apostolova, I., Skup, M., Irintchev, A., Kugler, S., Schachner, M., Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury (2007) Brain, 130, pp. 954-969
  • Cheng, W.Y., Larson, J.M., Samet, J.M., Monitoring intracellular oxidative events using dynamic spectral unmixing microscopy (2014) Methods, 66, pp. 345-352
  • Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Mendez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., Toscano, M.A., Rabinovich, G.A., Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156, pp. 744-758
  • De Winter, F., Holtmaat, A.J., Verhaagen, J., Neuropilin and class 3 semaphorins in nervous system regeneration (2002) Adv. Exp. Med. Biol., 515, pp. 115-139
  • De Winter, F., Oudega, M., Lankhorst, A.J., Hamers, F.P., Blits, B., Ruitenberg, M.J., Pasterkamp, R.J., Verhaagen, J., Injury-induced class 3 semaphorin expression in the rat spinal cord (2002) Exp. Neurol., 175, pp. 61-75
  • Fan, J., Mansfield, S.G., Redmond, T., Gordon-Weeks, P.R., Raper, J.A., The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor (1993) J. Cell Biol., 121, pp. 867-878
  • Fournier, A.E., Nakamura, F., Kawamoto, S., Goshima, Y., Kalb, R.G., Strittmatter, S.M., Semaphorin3A enhances endocytosis at sites of receptor-F-actin colocalization during growth cone collapse (2000) J. Cell Biol., 149, pp. 411-422
  • Giridharan, S.S., Caplan, S., MICAL-family proteins: Complex regulators of the actin cytoskeleton (2014) Antioxid. Redox Signal., 20, pp. 2059-2073
  • Goshima, Y., Kawakami, T., Hori, H., Sugiyama, Y., Takasawa, S., Hashimoto, Y., Kagoshima-Maezono, M., Strittmatter, S.M., A novel action of collapsin: collapsin-1 increases antero- and retrograde axoplasmic transport independently of growth cone collapse (1997) J. Neurobiol., 33, pp. 316-328
  • Halpain, S., Actin and the agile spine: how and why do dendritic spines dance? (2000) Trends Neurosci., 23, pp. 141-146
  • Hung, R.J., Terman, J.R., Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly (2011) Cytoskeleton, 68, pp. 415-433. , (Hoboken)
  • Hung, R.J., Pak, C.W., Terman, J.R., Direct redox regulation of F-actin assembly and disassembly by Mical (2011) Science, 334, pp. 1710-1713
  • Hung, R.J., Yazdani, U., Yoon, J., Wu, H., Yang, T., Gupta, N., Huang, Z., Terman, J.R., Mical links semaphorins to F-actin disassembly (2010) Nature, 463, pp. 823-827
  • Ishikawa-Ankerhold, H.C., Ankerhold, R., Drummen, G.P., Advanced fluorescence microscopy techniques-FRAP, FLIP, FLAP, FRET and FLIM (2012) Molecules, 17, pp. 4047-4132
  • Kaech, S., Banker, G., Culturing hippocampal neurons (2006) Nat. Protoc., 1, pp. 2406-2415
  • Kaneko, S., Iwanami, A., Nakamura, M., Kishino, A., Kikuchi, K., Shibata, S., Okano, H.J., Okano, H., A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord (2006) Nat. Med., 12, pp. 1380-1389
  • Lee, S.U., Grigorian, A., Pawling, J., Chen, I.J., Gao, G., Mozaffar, T., McKerlie, C., Demetriou, M., N-glycan processing deficiency promotes spontaneous inflammatory demyelination and neurodegeneration (2007) J. Biol. Chem., 282, pp. 33725-33734
  • Limon-Pacheco, J.H., Gonsebatt, M.E., The glutathione system and its regulation by neurohormone melatonin in the central nervous system (2010) Cent. Nerv. Syst. Agents Med. Chem., 10, pp. 287-297
  • Liu, Z., Li, Y., Zhang, J., Elias, S., Chopp, M., Evaluation of corticospinal axon loss by fluorescent dye tracing in mice with experimental autoimmune encephalomyelitis (2008) J. Neurosci. Methods, 167, pp. 191-197
  • Liu, K., Lu, Y., Lee, J.K., Samara, R., Willenberg, R., Sears-Kraxberger, I., Tedeschi, A., He, Z., PTEN deletion enhances the regenerative ability of adult corticospinal neurons (2010) Nat. Neurosci., 13, pp. 1075-1081
  • Mann, F., Rougon, G., Mechanisms of axon guidance: membrane dynamics and axonal transport in semaphorin signalling (2007) J. Neurochem., 102, pp. 316-323
  • Marrs, G.S., Green, S.H., Dailey, M.E., Rapid formation and remodeling of postsynaptic densities in developing dendrites (2001) Nat. Neurosci., 4, pp. 1006-1013
  • Matus, A., Actin-based plasticity in dendritic spines (2000) Science, 290, pp. 754-758
  • Mendez-Huergo, S.P., Maller, S.M., Farez, M.F., Marino, K., Correale, J., Rabinovich, G.A., Integration of lectin-glycan recognition systems and immune cell networks in CNS inflammation (2014) Cytokine Growth Factor Rev.
  • Mire, E., Thomasset, N., Jakeman, L.B., Rougon, G., Modulating Sema3A signal with a L1 mimetic peptide is not sufficient to promote motor recovery and axon regeneration after spinal cord injury (2008) Mol. Cell. Neurosci., 37, pp. 222-235
  • Morinaka, A., Yamada, M., Itofusa, R., Funato, Y., Yoshimura, Y., Nakamura, F., Yoshimura, T., Miki, H., Thioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse (2011) Sci. Signal., 4. , ra26
  • Negishi, M., Oinuma, I., Katoh, H., Plexins: axon guidance and signal transduction (2005) Cell. Mol. Life Sci., 62, pp. 1363-1371
  • Pasquini, L.A., Millet, V., Hoyos, H.C., Giannoni, J.P., Croci, D.O., Marder, M., Liu, F.T., Pasquini, J.M., Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function (2011) Cell Death Differ., 18, pp. 1746-1756
  • Pasterkamp, R.J., Verhaagen, J., Emerging roles for semaphorins in neural regeneration (2001) Brain Res. Brain Res. Rev., 35, pp. 36-54
  • Pasterkamp, R.J., Giger, R.J., Ruitenberg, M.J., Holtmaat, A.J., De Wit, J., De Winter, F., Verhaagen, J., Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS (1999) Mol. Cell. Neurosci., 13, pp. 143-166
  • Quinta, H.R., Galigniana, M.D., The neuroregenerative mechanism mediated by the Hsp90-binding immunophilin FKBP52 resembles the early steps of neuronal differentiation (2012) Br. J. Pharmacol., 166, pp. 637-649
  • Quinta, H.R., Maschi, D., Gomez-Sanchez, C., Piwien-Pilipuk, G., Galigniana, M.D., Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth (2010) J. Neurochem., 115, pp. 716-734
  • Quinta, H.R., Pasquini, L.A., Pasquini, J.M., Three-dimensional reconstruction of corticospinal tract using one-photon confocal microscopy acquisition allows detection of axonal disruption in spinal cord injury (2015) J. Neurochem., 133, pp. 113-124
  • Quinta, H.R., Pasquini, J.M., Rabinovich, G.A., Pasquini, L.A., Axonal regeneration in spinal cord injury: key role of galectin-1 (2014) Medicina, 74, pp. 321-325. , (B Aires)
  • Quinta, H.R., Pasquini, J.M., Rabinovich, G.A., Pasquini, L.A., Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury (2014) Cell Death Differ., 21, pp. 941-955
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer (2012) Immunity, 36, pp. 322-335
  • Riedl, J., Crevenna, A.H., Kessenbrock, K., Yu, J.H., Neukirchen, D., Bista, M., Bradke, F., Wedlich-Soldner, R., Lifeact: a versatile marker to visualize F-actin (2008) Nat. Methods, 5, pp. 605-607
  • Takahashi, T., Fournier, A., Nakamura, F., Wang, L.H., Murakami, Y., Kalb, R.G., Fujisawa, H., Strittmatter, S.M., Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors (1999) Cell, 99, pp. 59-69
  • Tamagnone, L., Artigiani, S., Chen, H., He, Z., Ming, G.I., Song, H., Chedotal, A., Comoglio, P.M., Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates (1999) Cell, 99, pp. 71-80
  • Wilson, C., Nunez, M.T., Gonzalez-Billault, C., Contribution of NADPH-oxidase to the establishment of hippocampal neuronal polarity in culture (2015) J. Cell Sci.
  • Yang, X., Li, J., Geng, M., N-acetylglucosaminyltransferase V modifies TrKA protein, regulates the receptor function (2008) Cell. Mol. Neurobiol., 28, pp. 663-670
  • Zukor, K., Belin, S., Wang, C., Keelan, N., Wang, X., He, Z., Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury (2013) J. Neurosci., 33, pp. 15350-15361

Citas:

---------- APA ----------
Quintá, H.R., Wilson, C., Blidner, A.G., González-Billault, C., Pasquini, L.A., Rabinovich, G.A. & Pasquini, J.M. (2016) . Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth. Experimental Neurology, 283, 165-178.
http://dx.doi.org/10.1016/j.expneurol.2016.06.009
---------- CHICAGO ----------
Quintá, H.R., Wilson, C., Blidner, A.G., González-Billault, C., Pasquini, L.A., Rabinovich, G.A., et al. "Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth" . Experimental Neurology 283 (2016) : 165-178.
http://dx.doi.org/10.1016/j.expneurol.2016.06.009
---------- MLA ----------
Quintá, H.R., Wilson, C., Blidner, A.G., González-Billault, C., Pasquini, L.A., Rabinovich, G.A., et al. "Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth" . Experimental Neurology, vol. 283, 2016, pp. 165-178.
http://dx.doi.org/10.1016/j.expneurol.2016.06.009
---------- VANCOUVER ----------
Quintá, H.R., Wilson, C., Blidner, A.G., González-Billault, C., Pasquini, L.A., Rabinovich, G.A., et al. Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth. Exp. Neurol. 2016;283:165-178.
http://dx.doi.org/10.1016/j.expneurol.2016.06.009