Artículo

Chauchereau, A.; Al Nakouzi, N.; Gaudin, C.; Le Moulec, S.; Compagno, D.; Auger, N.; Bénard, J.; Opolon, P.; Rozet, F.; Validire, P.; Fromont, G.; Fizazi, K. "Stemness markers characterize IGR-CaP1, a new cell line derived from primary epithelial prostate cancer" (2011) Experimental Cell Research. 317(3):262-275
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Deciphering molecular pathways involved in the early steps of prostate oncogenesis requires both in vitro and in vivo models derived from human primary tumors. However the few recognized models of human prostate epithelial cancer originate from metastases. To date, very few models are proposed from primary tumors and immortalizing normal human prostate cells does not recapitulate the natural history of the disease. By culturing human prostate primary tumor cells onto human epithelial extra-cellular matrix, we successfully selected a new prostate cancer cell line, IGR-CaP1, and clonally-derived subclones. IGR-CaP1 cells, that harbor a tetraploid karyotype, high telomerase activity and mutated TP53, rapidly induced subcutaneous xenografts in nude mice. Furthermore, IGR-CaP1 cell lines, all exhibiting negativity for the androgen receptor and PSA, express the specific prostate markers alpha-methylacyl-CoA racemase and a low level of the prostate-specific membrane antigen PSMA, along with the prostate basal epithelial markers CK5 and CK14. More importantly, these clones express high CD44, CD133, and CXCR4 levels associated with high expression of α2β1-integrin and Oct4 which are reported to be prostate cancer stemness markers. RT-PCR data also revealed high activation of the Sonic Hedgehog signalling pathway in these cells. Additionally, the IGR-CaP1 cells possess a 3D sphere-forming ability and a renewal capacity by maintaining their CSC potential after xenografting in mice. As a result, the hormone-independent IGR-CaP1 cellular clones exhibit the original features of both basal prostate tissue and cancer stemness. Tumorigenic IGR-CaP1 clones constitute invaluable human models for studying prostate cancer progression and drug assessment in vitro as well as in animals specifically for developing new therapeutic approaches targeting prostate cancer stem cells. © 2010 Elsevier Inc.

Registro:

Documento: Artículo
Título:Stemness markers characterize IGR-CaP1, a new cell line derived from primary epithelial prostate cancer
Autor:Chauchereau, A.; Al Nakouzi, N.; Gaudin, C.; Le Moulec, S.; Compagno, D.; Auger, N.; Bénard, J.; Opolon, P.; Rozet, F.; Validire, P.; Fromont, G.; Fizazi, K.
Filiación:Prostate Cancer Group, INSERM U981, Institut Gustave Roussy, Villejuif, F-94805, France
Laboratory of Prostate Cancer, Dep. Química Biológica-University of Buenos-Aires-FCEyN, Buenos-Aires, Argentina
Department of Medical Biology and Pathology, Institut Gustave Roussy, Villejuif, F-94805, France
Experimental Pathology Unit of IRCIV, Institut Gustave Roussy, Villejuif, F-94805, France
Department of Urology, Institut Mutualiste Montsouris, Paris, F-75014, France
Department of Pathology, Institut Mutualiste Montsouris, Paris, F-75014, France
Department of Pathology, CHU-University of Poitiers, Poitiers, F-86000, France
University Paris-Sud 11, France
Palabras clave:Basal epithelial cells; Gene expression profiling; Prostatic neoplasms; Tumor cells cultured; Tumor stem cells; 2 methylacyl coenzyme A racemase; cytokeratin 14; cytokeratin 5; octamer transcription factor 4; prostate specific membrane antigen; protein p53; sonic hedgehog protein; telomerase; very late activation antigen 2; adult; animal cell; animal experiment; animal tissue; article; cancer cell culture; cancer growth; cancer stem cell; case report; cell structure; controlled study; enzyme activity; epithelium cell; extracellular matrix; gene mutation; human; human cell; IGR CaP1 cell; male; mouse; nonhuman; priority journal; prostate cancer; protein expression; signal transduction; tetraploidy; Animalia; Erinaceidae; Mus; Mus musculus
Año:2011
Volumen:317
Número:3
Página de inicio:262
Página de fin:275
DOI: http://dx.doi.org/10.1016/j.yexcr.2010.10.012
Título revista:Experimental Cell Research
Título revista abreviado:Exp. Cell Res.
ISSN:00144827
CODEN:ECREA
CAS:2 methylacyl coenzyme A racemase, 156681-44-6
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00144827_v317_n3_p262_Chauchereau

Referencias:

  • Lin, A.M., Small, E.J., Prostate cancer update: 2007 (2008) Curr. Opin. Oncol., 20, pp. 294-299
  • Fizazi, K., Navone, N.M., Preclinical models of prostate cancer (2005) Bull. Cancer, 92, pp. 129-141
  • Sobel, R.E., Sadar, M.D., Cell lines used in prostate cancer research: a compendium of old and new lines-part 2 (2005) J. Urol., 173, pp. 360-372
  • Koochekpour, S., Maresh, G.A., Katner, A., Parker-Johnson, K., Lee, T.J., Hebert, F.E., Kao, Y.S., Rayford, W., Establishment and characterization of a primary androgen-responsive African-American prostate cancer cell line, E006AA (2004) Prostate, 60, pp. 141-152
  • Selvan, S.R., Cornforth, A.N., Rao, N.P., Reid, Y.A., Schiltz, P.M., Liao, R.P., Price, D.T., Dillman, R.O., Establishment and characterization of a human primary prostate carcinoma cell line, HH870 (2005) Prostate, 63, pp. 91-103
  • D'Antonio, J.M., Vander Griend, D.J., Antony, L., Ndikuyeze, G., Dalrymple, S.L., Koochekpour, S., Isaacs, J.T., Loss of androgen receptor-dependent growth suppression by prostate cancer cells can occur independently from acquiring oncogenic addiction to androgen receptor signalling (2010) PLoS ONE, 5, pp. e11475
  • Attard, G., Rizzo, S., Ledaki, I., Clark, J., Reid, A.H., Thompson, A., Khoo, V., Hudson, D.L., A novel, spontaneously immortalized, human prostate cancer cell line, Bob, offers a unique model for pre-clinical prostate cancer studies (2009) Prostate, 69, pp. 1507-1520
  • Visvader, J.E., Lindeman, G.J., Cancer stem cells in solid tumors: accumulating evidence and unresolved questions (2008) Nat. Rev. Cancer, 8, pp. 755-768
  • Taylor, R.A., Risbridger, G.P., The path toward identifying prostatic stem cells (2008) Differentiation, 76, pp. 671-681
  • Collins, A.T., Habib, F.K., Maitland, N.J., Neal, D.E., Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression (2001) J. Cell Sci., 114, pp. 3865-3872
  • Richardson, G.D., Robson, C.N., Lang, S.H., Neal, D.E., Maitland, N.J., Collins, A.T., CD133, a novel marker for human prostatic epithelial stem cells (2004) J. Cell Sci., 117, pp. 3539-3545
  • Collins, A.T., Berry, P.A., Hyde, C., Stower, M.J., Maitland, N.J., Prospective identification of tumorigenic prostate cancer stem cells (2005) Cancer Res., 65, pp. 10946-10951
  • Daly-Burns, B., Alam, T.N., Mackay, A., Clark, J., Shepherd, C.J., Rizzo, S., Tatoud, R., Hudson, D.L., A conditionally immortalized cell line model for the study of human prostatic epithelial cell differentiation (2007) Differentiation, 75, pp. 35-48
  • Gu, G., Yuan, J., Wills, M., Kasper, S., Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo (2007) Cancer Res., 67, pp. 4807-4815
  • Miki, J., Furusato, B., Li, H., Gu, Y., Takahashi, H., Egawa, S., Sesterhenn, I.A., Rhim, J.S., Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens (2007) Cancer Res., 67, pp. 3153-3161
  • Li, H., Zhou, J., Miki, J., Furusato, B., Gu, Y., Srivastava, S., McLeod, D.G., Rhim, J.S., Telomerase immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells (2008) Exp. Cell Res., 314, pp. 92-102
  • Ferrandis, E., Da Silva, J., Riou, G., Bénard, J., Coactivation of the MDR1 and MYCN genes in human neuroblastoma cells during the metastatic process in the nude mouse (1994) Cancer Res., 54, pp. 2256-2261
  • Kao, W.W., Prockop, D.J., Proline analogue removes fibroblasts from cultured mixed cell populations (1977) Nature, 266, pp. 63-66
  • Fizazi, K., Yang, J., Peleg, S., Sikes, C.R., Kreimann, E.L., Daliani, D., Olive, M., Navone, N.M., Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts (2003) Clin. Cancer Res., 9, pp. 2587-2597
  • Pavelic, Z.P., Slocum, H.K., Rustum, Y.M., Creaven, P.J., Nowak, N.J., Karakousis, C., Takita, H., Mittelman, A., Growth of cell colonies in soft agar from biopsies of different human solid tumors (1980) Cancer Res., 40, pp. 4151-4158
  • Eura, M., Chikamatsu, K., Katsura, F., Obata, A., Sobao, Y., Takiguchi, M., Song, Y., DeLeo, A.B., A wild-type sequence p53 peptide presented by HLA-A24 induces cytotoxic T lymphocytes that recognize squamous cell carcinomas of the head and neck (2000) Clin. Cancer Res., 6, pp. 979-986
  • Couturier, J., Dutrillaux, B., Conservation of replication chronology of homologous chromosome bands between four species of the genus Cebus and man (1981) Cytogenet. Cell Genet., 29, pp. 233-240
  • Fizazi, K., Sikes, C.R., Kim, J., Yang, J., Martinez, L.A., Olive, M.C., Logothetis, C.J., Navone, N.M., High efficacy of docetaxel with and without androgen deprivation and estramustine in preclinical models of advanced prostate cancer (2004) Anticancer Res., 24, pp. 2897-2903
  • Counter, C.M., Hahn, W.C., Wei, W., Caddle, S.D., Beijersbergen, R.L., Lansdorp, P.M., Sedivy, J.M., Weinberg, R.A., Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization (1998) Proc. Natl Acad. Sci. USA, 95, pp. 14723-14728
  • Jiang, Z., Woda, B.A., Rock, K.L., Xu, Y., P504S: a new molecular marker for the detection of prostate carcinoma (2001) Am. J. Surg. Pathol., 25, pp. 1397-1404
  • Zha, S., Ferdinandusse, S., Denis, S., Wanders, R.J., Ewing, C.M., Luo, J., De Marzo, A.M., Isaacs, W.B., Alpha-methylacyl-CoA racemase as an androgen-independent growth modifier in prostate cancer (2003) Cancer Res., 63, pp. 7365-7376
  • Burger, M.J., Tebay, M.A., Keith, P.A., Samaratunga, H.M., Clements, J., Lavin, M.F., Gardiner, R.A., Expression analysis of delta-catenin and prostate-specific membrane antigen: their potential as diagnostic markers for prostate cancer (2002) Int. J. Cancer, 100, pp. 228-237
  • Chung, L.W., Baseman, A., Assikis, V., Zhau, H.E.H.E., Molecular insights into prostate cancer progression: the missing link of tumor Microenvironment (2005) J. Urol., 173, pp. 10-20
  • Boiani, M., Scholer, H.R., Regulatory networks in embryo-derived pluripotent stem cells (2005) Nat. Rev. Mol. Cell Biol., 6, pp. 872-884
  • Beachy, P.A., Karhadkar, S.S., Berman, D.M., Tissue repair and stem cell renewal in carcinogenesis (2004) Nature, 432, pp. 324-331
  • Litvinov, I.V., Vander Griend, D.J., Xu, Y., Antony, L., Dalrymple, S.L., Isaacs, J.T., Low-calcium serum-free defined medium selects for growth of normal prostatic epithelial stem cells (2006) Cancer Res., 66, pp. 8598-8607
  • Shou, J., Ross, S., Koeppen, H., de Sauvage, F.J., Gao, W.Q., Dynamics of notch expression during murine prostate development and tumorigenesis (2001) Cancer Res., 61, pp. 7291-7297
  • Pascal, L.E., Oudes, A.J., Petersen, T.W., Goo, Y.A., Walashek, L.S., True, L.D., Liu, A.Y., Molecular and cellular characterization of ABCG2 in the prostate (2007) BMC Urol., 6, p. 6
  • Lequin, D., Fizazi, K., Toujani, S., Souquère, S., Mathieu, M.C., Hainaut, P., Bernheim, A., Busson, P., Biological characterization of two xenografts derived from human CUPs (carcinomas of unknown primary) (2007) BMC Cancer, 7, p. 225
  • Navone, N.M., Troncoso, P., Pisters, L.L., Goodrow, T.L., Palmer, J.L., Nichols, W.W., von Eschenbach, A.C., Conti, C.J., P53 protein accumulation and gene mutation in the progression of human prostate carcinoma (1993) J. Natl Cancer Inst., 85, pp. 1657-1669
  • Navone, N.M., Labate, M.E., Troncoso, P., Pisters, L.L., Conti, C.J., von Eschenbach, A.C., Logothetis, C.J., P53 mutations in prostate cancer bone metastases suggest that selected p53 mutants in the primary site define foci with metastatic potential (1999) J. Urol., 161, pp. 304-308
  • Storchova, Z., Kuffer, C., The consequences of tetraploidy and aneuploidy (2008) J. Cell Sci., 121, pp. 3859-3866
  • Andreassen, P.R., Lohez, O.D., Lacroix, F.B., Margolis, R.L., Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1 (2001) Mol. Biol. Cell, 12, pp. 1315-1328
  • Wicha, M.S., Liu, S., Dontu, G., Cancer stem cells: an old idea-a paradigm shift (2006) Cancer Res., 66, pp. 1883-1890
  • Campbell, L.L., Polyak, K., Breast tumor heterogeneity: Cancer stem cells or clonal evolution? (2007) Cell Cycle, 6, pp. 2332-2338
  • Adams, J.M., Strasser, A., Is tumor growth sustained by rare cancer stem cells or dominant clones? (2008) Cancer Res., 68, pp. 4018-4021
  • Sanchez, P., Hernández, A.M., Stecca, B., Kahler, A.J., DeGueme, A.M., Barrett, A., Beyna, M., Ruiz, A., I Altaba, Inhibition of prostate cancer proliferation by interference with Sonic Hedgehog-GLI1 signaling (2004) Proc. Natl Acad. Sci. USA, 101, pp. 12561-12566
  • Karhadkar, S.S., Bova, G.S., Abdallah, N., Dhara, S., Gardner, D., Maitra, A., Isaacs, J.T., Beachy, P.A., Hedgehog signalling in prostate regeneration, neoplasia and metastasis (2004) Nature, 431, pp. 707-712
  • Sheng, T., Li, C., Zhang, X., Chi, S., He, N., Chen, K., McCormick, F., Xie, J., Activation of the hedgehog pathway in advanced prostate cancer (2004) Mol. Cancer, 3, p. 29
  • Chen, B.Y., Liu, J.Y., Chang, H.H., Chang, C.P., Lo, W.Y., Kuo, W.H., Yang, C.R., Lin, D.P., Hedgehog is involved in prostate basal cell hyperplasia formation and its progressing towards tumorigenesis (2007) Biochem. Biophys. Res. Commun., 357, pp. 1084-1089
  • Thiyagarajan, S., Bhatia, N., Reagan-Shaw, S., Cozma, D., Thomas-Tikhonenko, A., Ahmad, N., Spiegelman, V.S., Role of GLI2 transcription factor in growth and tumorigenicity of prostate cells (2007) Cancer Res., 67, pp. 10642-10646
  • Zayzafoon, M., Abdulkadir, S.A., McDonald, J.M., Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines (2004) J. Biol. Chem., 279, pp. 3662-3670
  • Scorey, N., Fraser, S.P., Patel, P., Pridgeon, C., Dallman, M.J., Djamgoz, M.B., Notch signalling and voltage-gated Na1 channel activity in human prostate cancer cells: independent modulation of in vitro motility (2006) Prostate Cancer Prostatic Dis., 9, pp. 399-406
  • Chen, Y.C., Hsu, H.S., Chen, Y.W., Tsai, T.H., How, C.K., Wang, C.Y., Hung, S.C., Chiou, S.H., Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells (2008) PLoS ONE, 3, pp. e2637

Citas:

---------- APA ----------
Chauchereau, A., Al Nakouzi, N., Gaudin, C., Le Moulec, S., Compagno, D., Auger, N., Bénard, J.,..., Fizazi, K. (2011) . Stemness markers characterize IGR-CaP1, a new cell line derived from primary epithelial prostate cancer. Experimental Cell Research, 317(3), 262-275.
http://dx.doi.org/10.1016/j.yexcr.2010.10.012
---------- CHICAGO ----------
Chauchereau, A., Al Nakouzi, N., Gaudin, C., Le Moulec, S., Compagno, D., Auger, N., et al. "Stemness markers characterize IGR-CaP1, a new cell line derived from primary epithelial prostate cancer" . Experimental Cell Research 317, no. 3 (2011) : 262-275.
http://dx.doi.org/10.1016/j.yexcr.2010.10.012
---------- MLA ----------
Chauchereau, A., Al Nakouzi, N., Gaudin, C., Le Moulec, S., Compagno, D., Auger, N., et al. "Stemness markers characterize IGR-CaP1, a new cell line derived from primary epithelial prostate cancer" . Experimental Cell Research, vol. 317, no. 3, 2011, pp. 262-275.
http://dx.doi.org/10.1016/j.yexcr.2010.10.012
---------- VANCOUVER ----------
Chauchereau, A., Al Nakouzi, N., Gaudin, C., Le Moulec, S., Compagno, D., Auger, N., et al. Stemness markers characterize IGR-CaP1, a new cell line derived from primary epithelial prostate cancer. Exp. Cell Res. 2011;317(3):262-275.
http://dx.doi.org/10.1016/j.yexcr.2010.10.012