Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Quercetin is a natural flavonoid widely distributed in plants that acts as a neuroprotective agent and modulates the activity of different synaptic receptors and ion channels, including the ionotropic GABA receptors. GABA Aρ1 receptors were shown to be antagonized by quercetin, but the mechanisms underlying these antagonistic actions are still unknown. We have analyzed here if the antagonistic action produced by quercetin on GABA Aρ1 receptors was related to its redox activity or due to alternative mechanism/s. Homomeric GABAAρ1 receptors were expressed in frog oocytes and GABA-evoked responses electro-physiologically recorded. Quercetin effects on GABAAρ1 receptors were examined in the absence or presence of ascorbic acid. Chemical protection of cysteines by selective sulfhydryl reagents and site directed mutagenesis experiments were also used to determine ρ1 subunit residues involved in quercetin actions. Quercetin antagonized GABAAρ1 receptor responses in a dose-dependent, fast and reversible manner. Quercetin inhibition was prevented in the presence of ascorbic acid, but not by thiol reagents that modify the extracellular Cys-loop of these receptors. H141, an aminoacidic residue located near to the ρ1 subunit GABA binding site, was involved in the allosteric modulation of GABAAρ1 receptors by several agents including ascorbic acid. Quercetin similarly antagonized GABA-evoked responses mediated by mutant H141DGABAAρ1 and wild-type receptors, but prevention exerted by ascorbic acid on quercetin effects was impaired in mutant receptors. Taken together the present results suggest that quercetin antagonistic actions on GABAAρ1 receptors are mediated through a redox-independent allosteric mechanism. © 2013 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Quercetin antagonism of GABAAρ1 receptors is prevented by ascorbic acid through a redox-independent mechanism
Autor:Calero, C.I.; González, A.N.B.; Gasulla, J.; Alvarez, S.; Evelson, P.; Calvo, D.J.
Filiación:Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
Laboratorio de Biología de Radicales Libres, IBIMOL, CONICET, FFyB UBA, Junín 954, C1113AAB Ciudad Autónoma de Buenos Aires, Argentina
Laboratorio de Neurociencia Integrativa, Depto. de Física, FCEN UBA CONICET, Intendente Güiraldes 2160, Pabellón I, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:Allosteric modulator; Ascorbic acid; Flavonoid; GABA receptor; Quercetin; 4 aminobutyric acid; 4 aminobutyric acid A receptor; 4 aminobutyric acid A receptor blocking agent; 4 aminobutyric acid receptor; ascorbic acid; flavonoid; histidine; quercetin; 4 aminobutyric acid A receptor; 4 aminobutyric acid A receptor blocking agent; ascorbic acid; quercetin; γ-aminobutyric acid; Allosteric modulator; allosterism; animal; article; chemistry; dose response; drug antagonism; drug effect; human; metabolism; N-ethylmaleimide; NEM; antagonists and inhibitors; drug effects; γ-aminobutyric acid; Allosteric modulator; Ascorbic acid; Flavonoid; GABA; GABA receptor; N-ethylmaleimide; NEM; Quercetin; Allosteric Regulation; Animals; Ascorbic Acid; Dose-Response Relationship, Drug; GABA-A Receptor Antagonists; Histidine; Humans; Quercetin; Receptors, GABA-A; Allosteric Regulation; Animals; Ascorbic Acid; Dose-Response Relationship, Drug; GABA-A Receptor Antagonists; Histidine; Humans; Quercetin; Receptors, GABA-A
Año:2013
Volumen:714
Número:1-3
Página de inicio:274
Página de fin:280
DOI: http://dx.doi.org/10.1016/j.ejphar.2013.07.044
Título revista:European Journal of Pharmacology
Título revista abreviado:Eur. J. Pharmacol.
ISSN:00142999
CODEN:EJPHA
CAS:4 aminobutyric acid, 28805-76-7, 56-12-2; ascorbic acid, 134-03-2, 15421-15-5, 50-81-7; histidine, 645-35-2, 7006-35-1, 71-00-1; quercetin, 117-39-5; Ascorbic Acid, PQ6CK8PD0R; GABA-A Receptor Antagonists; Histidine, 4QD397987E; Quercetin, 9IKM0I5T1E; Receptors, GABA-A; Ascorbic Acid; GABA-A Receptor Antagonists; Histidine; Quercetin; Receptors, GABA-A
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00142999_v714_n1-3_p274_Calero

Referencias:

  • Abdel-Halim, H., Hanrahan, J.R., Hibbs, D.E., Johnston, G.A.R., Chebib, M., A molecular basis for agonist and antagonist actions at GABAC receptors (2008) Chemical Biology and Drug Design, 71 (4), pp. 306-327. , DOI 10.1111/j.1747-0285.2008.00642.x
  • Avallone, R., Zanoli, P., Puia, G., Kleinschnitz, M., Schreier, P., Baraldi, M., Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla (2000) Biochemical Pharmacology, 59 (11), pp. 1387-1394. , DOI 10.1016/S0006-2952(00)00264-1, PII S0006295200002641
  • Bardsley, W.G., Childs, R.E., Sigmoid curves, non-linear double-reciprocal plots and allosterism (1975) Biochemical Journal, 149, pp. 313-328
  • Boots, A.W., Haenen, G.R., Bast, A., Health effects of quercetin: From antioxidant to nutraceutical (2008) European Journal of Pharmacology, 585, pp. 325-337
  • Boots, A.W., Wilms, L.C., Swennen, E.L.R., Kleinjans, J.C.S., Bast, A., Haenen, G.R.M.M., In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers (2008) Nutrition, 24 (7-8), pp. 703-710. , DOI 10.1016/j.nut.2008.03.023, PII S089990070800172X
  • Boots, A.W., Kubben, N., Haenen, G.R.M.M., Bast, A., Oxidized quercetin reacts with thiols rather than with ascorbate: Implication for quercetin supplementation (2003) Biochemical and Biophysical Research Communications, 308 (3), pp. 560-565. , DOI 10.1016/S0006-291X(03)01438-4
  • Boue-Grabot, E., Roudbaraki, M., Bascles, L., Tramu, G., Bloch, B., Garret, M., Expression of GABA receptor rho subunits in rat brain (1998) Journal of Neurochemistry, 70 (3), pp. 899-907
  • Calero, C.I., Calvo, D.J., Redox modulation of homomeric rho1 GABA receptors (2008) Journal of Neurochemistry, 105, pp. 2367-2374
  • Calero, C.I., Vickers, E., Moraga Cid, G., Aguayo, L.G., Von Gersdorff, H., Calvo, D.J., Allosteric modulation of retinal GABA receptors by ascorbic acid (2011) Journal of Neuroscience, 31, pp. 9672-9682
  • Cao, G., Sofic, E., Prior, R.L., Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships (1997) Free Radical Biology and Medicine, 22 (5), pp. 749-760. , DOI 10.1016/S0891-5849(96)00351-6, PII S0891584996003516
  • Caprile, T., Salazar, K., Astuya, A., Cisternas, P., Silva-Alvarez, C., Montecinos, H., Millan, C., Nualart, F., The na+-dependent L-ascorbic acid transporter SVCT2 expressed in brainstem cells, neurons, and neuroblastoma cells is inhibited by flavonoids (2009) Journal of Neurochemistry, 108, pp. 563-577
  • Chebib, M., Hinton, T., Schmid, K.L., Brinkworth, D., Qian, H., Matos, S., Kim, H.L., Hanrahan, J.R., Novel, potent, and selective GABAC antagonists inhibit myopia development and facilitate learning and memory (2009) Journal of Pharmacology and Experimental Therapeutics, 328, pp. 448-457
  • Chiou, G.C.Y., Xu, X.-R., Effects of some natural flavonoids on retinal function recovery after ischemic insult in the rat (2004) Journal of Ocular Pharmacology and Therapeutics, 20 (2), pp. 107-113. , DOI 10.1089/108076804773710777
  • Dekermendjian, K., Kahnberg, P., Witt, M.-R., Sterner, O., Nielsen, M., Liljefors, T., Structure-activity relationships and molecular modeling analysis of flavonoids binding to the benzodiazepine site of the rat brain GABA(A) receptor complex (1999) Journal of Medicinal Chemistry, 42 (21), pp. 4343-4350. , DOI 10.1021/jm991010h
  • Elliott, A.J., Scheiber, S.A., Thomas, C., Pardini, R.S., Inhibition of glutathione reductase by flavonoids. A structure-activity study (1992) Biochemical Pharmacology, 44, pp. 1603-1608
  • Enz, R., Brandstatter, J.H., Hartveit, E., Wassle, H., Bormann, J., Expression of GABA receptor rho 1 and rho 2 subunits in the retina and brain of the rat (1995) European Journal of Neuroscience, 7, pp. 1495-1501
  • Farrant, M., Nusser, Z., Variations on an inhibitory theme: Phasic and tonic activation of GABA A receptors (2005) Nature Reviews Neuroscience, 6 (3), pp. 215-229. , DOI 10.1038/nrn1625
  • Gavande, N., Karim, N., Johnston, G.A., Hanrahan, J.R., Chebib, M., Identification of benzopyran-4-one derivatives (isoflavones) as positive modulators of GABA(A) receptors (2011) Chem Med Chem, 6 (1340-1346), p. 1317
  • Goutman, J.D., Calvo, D.J., Studies on the mechanisms of action of picrotoxin, quercetin and pregnanolone at the GABArho1 receptor (2004) British Journal of Pharmacology, 141 (4), pp. 717-727. , DOI 10.1038/sj.bjp.0705657
  • Goutman, J.D., Waxemberg, M.D., Donate-Oliver, F., Pomata, P.E., Calvo, D.J., Flavonoid modulation of ionic currents mediated by GABAA and GABAC receptors (2003) European Journal of Pharmacology, 461 (2-3), pp. 79-87. , DOI 10.1016/S0014-2999(03)01309-8
  • Griebel, G., Perrault, G., Tan, S., Schoemaker, H., Sanger, D.J., Pharmacological studies on synthetic flavonoids: Comparison with diazepam (1999) Neuropharmacology, 38 (7), pp. 965-977. , DOI 10.1016/S0028-3908(99)00026-X, PII S002839089900026X
  • Haberlein, H., Tschiersch, K.-P., Schafer, H.L., Flavonoids from Leptospermum scoparium with affinity to the benzodiazepine receptor characterized by structure activity relationships and in vivo studies of a plant extract (1994) Pharmazie, 49 (12), pp. 912-922
  • Hall, B.J., Chebib, M., Hanrahan, J.R., Johnston, G.A., Flumazenil-independent positive modulation of gamma-aminobutyric acid action by 6-methylflavone at human recombinant alpha1beta2gamma2L and alpha1beta2 GABAA receptors (2004) European Journal of Pharmacology, 491, pp. 1-8
  • Hanrahan, J.R., Chebib, M., Davucheron, N.L.M., Hall, B.J., Johnston, G.A.R., Semisynthetic preparation of amentoflavone: A negative modulator at GABAA receptors (2003) Bioorganic and Medicinal Chemistry Letters, 13 (14), pp. 2281-2284. , DOI 10.1016/S0960-894X(03)00434-7
  • Hanrahan, J.R., Chebib, M., Johnston, G.A., Flavonoid modulation of GABA (A) receptors (2011) British Journal of Pharmacology, 163, pp. 234-245
  • Hull, C., Li, G.-L., Von Gersdorff, H., GABA transporters regulate a standing GABAC receptor-mediated current at a retinal presynaptic terminal (2006) Journal of Neuroscience, 26 (26), pp. 6979-6984. , http://www.jneurosci.org/cgi/reprint/26/26/6979, DOI 10.1523/JNEUROSCI.1386-06.2006
  • Ji, X.-D., Melman, N., Jacobson, K.A., Interactions of flavonoids and other phytochemicals with adenosine receptors (1996) Journal of Medicinal Chemistry, 39 (3), pp. 781-788. , DOI 10.1021/jm950661k
  • Johnston, G.A., Chebib, M., Hanrahan, J.R., Mewett, K.N., GABA(C) receptors as drug targets (2003) Current Drug Targets CNS and Neurological Disorders, 2, pp. 260-268
  • Johnston, G.A., Chebib, M., Hanrahan, J.R., Mewett, K.N., Neurochemicals for the investigation of GABA(C) receptors (2010) Neurochemical Research, 35, pp. 1970-1977
  • Karim, N., Curmi, J., Gavande, N., Johnston, G.A., Hanrahan, J.R., Tierney, M.L., Chebib, M., 2'-methoxy-6-methylflavone: A novel anxiolytic and sedative with subtype selective activating and modulating actions at GABA(A) receptors (2012) British Journal of Pharmacology, 165, pp. 880-896
  • Karim, N., Gavande, N., Wellendorph, P., Johnston, G.A., Hanrahan, J.R., Chebib, M., 3-hydroxy-2'-methoxy-6-methylflavone: A potent anxiolytic with a unique selectivity profile at GABA(A) receptor subtypes (2011) Biochemical Pharmacology, 82, pp. 1971-1983
  • Kavvadias, D., Sand, P., Youdim, K.A., Qaiser, M.Z., Rice-Evans, C., Baur, R., Sigel, E., Schreier, P., The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects (2004) British Journal of Pharmacology, 142 (5), pp. 811-820. , DOI 10.1038/sj.bjp.0705828
  • Koh, D.S., Reid, G., Vogel, W., Activating effect of the flavonoid phloretin on ca(2+)- activated K+ channels in myelinated nerve fibers of xenopus laevis (corrected) (1994) Neuroscience Letters, 165, pp. 167-170
  • Kusama, T., Spivak, C.E., Whiting, P., Dawson, V.L., Schaeffer, J.C., Uhl, G.R., Pharmacology of GABA rho1 and GABA α/β receptors expressed in Xenopus oocytes and COS cells (1993) British Journal of Pharmacology, 109 (1), pp. 200-206
  • Lee, B.H., Choi, S.H., Shin, T.J., Pyo, M.K., Hwang, S.H., Lee, S.M., Paik, H.D., Nah, S.Y., Effects of quercetin on alpha9alpha10 nicotinic acetylcholine receptor-mediated ion currents (2008) European Journal of Pharmacology, 650, pp. 79-85
  • Loscalzo, L.M., Yow, T.T., Wasowski, C., Chebib, M., Marder, M., Hesperidin induces antinociceptive effect in mice and its aglycone, hesperetin, binds to mu-opioid receptor and inhibits GIRK1/2 currents (2011) Pharmacology Biochemistry and Behavior, 99, pp. 333-341
  • Mall, M., Wissner, A., Seydewitz, H.H., Hubner, M., Kuehr, J., Brandis, M., Greger, R., Kunzelmann, K., Effect of genistein on native epithelial tissue from normal individuals and CF patients and on ion channels expressed in Xenopus oocytes (2000) British Journal of Pharmacology, 130 (8), pp. 1884-1892
  • Marder, M., Paladini, A.C., GABA(A)-receptor ligands of flavonoid structure (2002) Current Topics in Medicinal Chemistry, 2, pp. 853-867
  • Medina, J.H., Viola, H., Wolfman, C., Marder, M., Wasowski, C., Calvo, D., Paladini, A.C., Overview - Flavonoids: A new family of benzodiazepine receptor ligands (1997) Neurochemical Research, 22 (4), pp. 419-425
  • Nielsen, M., Frokjaer, S., Braestrup, C., High affinity of the naturally-occurring biflavonoid, amentoflavon, to brain benzodiazepine receptors in vitro (1988) Biochemical Pharmacology, 37, pp. 3285-3287
  • Ren, L., Wang, F., Xu, Z., Chan, W.M., Zhao, C., Xue, H., GABA(A) receptor subtype selectivity underlying anxiolytic effect of 6-hydroxyflavone (2010) Biochemical Pharmacology, 79, pp. 1337-1344
  • Saponara, S., Sgaragli, G., Fusi, F., Quercetin as a novel activator of L-type Ca2+ channels in rat tail artery smooth muscle cells (2002) British Journal of Pharmacology, 135 (7), pp. 1819-1827. , DOI 10.1038/sj.bjp.0704631
  • Song, J., Kwon, O., Chen, S., Daruwala, R., Eck, P., Park, J.B., Levine, M., Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and glucose (2002) Journal of Biological Chemistry, 277 (18), pp. 15252-15260. , DOI 10.1074/jbc.M110496200
  • Williams, R.J., Spencer, J.P.E., Rice-Evans, C., Flavonoids: Antioxidants or signalling molecules? (2004) Free Radical Biology and Medicine, 36 (7), pp. 838-849. , DOI 10.1016/j.freeradbiomed.2004.01.001, PII S0891584904000334
  • Woodward, R.M., Polenzani, L., Miledi, R., Characterization of bicuculline/baclofen-insensitive (rho-like) gamma-aminobutyric acid receptors expressed in Xenopus oocytes. II. Pharmacology of gamma-aminobutyric acidA and gamma-aminobutyric acidB receptor agonists and antagonists (1993) Molecular Pharmacology, 43 (4), pp. 609-625
  • Zhang, D., Pan, Z.-H., Awobuluyi, M., Lipton, S.A., Structure and function of GABAC receptors: A comparison of native versus recombinant receptors (2001) Trends in Pharmacological Sciences, 22 (3), pp. 121-132. , DOI 10.1016/S0165-6147(00)01625-4, PII S0165614700016254

Citas:

---------- APA ----------
Calero, C.I., González, A.N.B., Gasulla, J., Alvarez, S., Evelson, P. & Calvo, D.J. (2013) . Quercetin antagonism of GABAAρ1 receptors is prevented by ascorbic acid through a redox-independent mechanism. European Journal of Pharmacology, 714(1-3), 274-280.
http://dx.doi.org/10.1016/j.ejphar.2013.07.044
---------- CHICAGO ----------
Calero, C.I., González, A.N.B., Gasulla, J., Alvarez, S., Evelson, P., Calvo, D.J. "Quercetin antagonism of GABAAρ1 receptors is prevented by ascorbic acid through a redox-independent mechanism" . European Journal of Pharmacology 714, no. 1-3 (2013) : 274-280.
http://dx.doi.org/10.1016/j.ejphar.2013.07.044
---------- MLA ----------
Calero, C.I., González, A.N.B., Gasulla, J., Alvarez, S., Evelson, P., Calvo, D.J. "Quercetin antagonism of GABAAρ1 receptors is prevented by ascorbic acid through a redox-independent mechanism" . European Journal of Pharmacology, vol. 714, no. 1-3, 2013, pp. 274-280.
http://dx.doi.org/10.1016/j.ejphar.2013.07.044
---------- VANCOUVER ----------
Calero, C.I., González, A.N.B., Gasulla, J., Alvarez, S., Evelson, P., Calvo, D.J. Quercetin antagonism of GABAAρ1 receptors is prevented by ascorbic acid through a redox-independent mechanism. Eur. J. Pharmacol. 2013;714(1-3):274-280.
http://dx.doi.org/10.1016/j.ejphar.2013.07.044