Artículo

Orsetti, S.; Marco-Brown, J.L.; Andrade, E.M.; Molina, F.V. "Pb(II) binding to humic substances: An equilibrium and spectroscopic study" (2013) Environmental Science and Technology. 47(15):8325-8333
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The binding of Pb(II) to humic acids is studied through an approach combining equilibrium and spectroscopic measurements. The methods employed are potentiometric and fluorometric titrations, fluorescence excitation-emission matrices (EEM) and IR spectroscopy. Potentiometric titration curves are analyzed using the NICA equations and an electrostatic model treating the humic particles as an elastic polyelectrolyte network. EEMs are analyzed using parallel factor analysis, decomposing the signal in its independent components and finding their dependence on Pb(II) activity. Potentiometric results are consistent with bimodal affinity distributions for Pb(II) binding, whereas fluorometric titrations are explained by monomodal distributions. EEM analysis is consistent with three independent components in the humic fluorescence response, which are assigned to moieties with different degree of aromaticity. All three components show a similar quenching behavior upon Pb(II) binding, saturating at relatively low Pb(II) concentrations. This is attributed to metal ion induced aggregation of humic molecules, resulting in the interaction between the aromatic groups responsible for fluorescence; this is also consistent with IR spectroscopy results. The observed behavior is interpreted considering that initial metal binding (observed as strongly binding sites), correspond to bi- or multidentate complexation to carboxylate groups, including binding between groups of different humic molecules, promoting aggregation; further metal ions (observed as weakly binding sites) bind to single ligand groups. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Pb(II) binding to humic substances: An equilibrium and spectroscopic study
Autor:Orsetti, S.; Marco-Brown, J.L.; Andrade, E.M.; Molina, F.V.
Filiación:Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Institut für Geowissenschaften, Zentrum für Angewandte Geowissenschaften, Eberhard-Karls Universität Tübingen, Germany
Palabras clave:Affinity distributions; Fluorescence excitation-emission matrices; Monomodal distribution; Multidentate complexation; Parallel factor analysis; Polyelectrolyte networks; Potentiometric titrations; Spectroscopic measurements; Carboxylation; Fluorescence; Metal ions; Molecules; Potentiometers (electric measuring instruments); Spectroscopic analysis; Titration; Voltammetry; Lead; carboxylic acid; humic acid; lead; metal ion; polyelectrolyte; chemical binding; complexation; concentration (composition); equilibrium; humic substance; lead; spectroscopy; article; binding affinity; complex formation; excitation emission matrice fluorescence spectroscopy; factorial analysis; fluorescence spectroscopy; fluorometry; humic substance; infrared spectroscopy; metal binding; potentiometric titration; Raman spectrometry; spectroscopy; Fluorometry; Humic Substances; Lead; Models, Chemical; Potentiometry; Spectrophotometry, Infrared; Static Electricity
Año:2013
Volumen:47
Número:15
Página de inicio:8325
Página de fin:8333
DOI: http://dx.doi.org/10.1021/es400999q
Título revista:Environmental Science and Technology
Título revista abreviado:Environ. Sci. Technol.
ISSN:0013936X
CODEN:ESTHA
CAS:humic acid, 1415-93-6; lead, 13966-28-4, 7439-92-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0013936X_v47_n15_p8325_Orsetti

Referencias:

  • Senesi, N., Loffredo, E., The chemistry of soil organic matter (1998) Soil Physical Chemistry, pp. 239-370. , Sparks, D. L. CRC Press: Boca Raton, Fl
  • Baldock, J.A., Nelson, P.N., Soil organic matter (1999) Handbook of Soil Science, p. 75. , Sumner, M. L. ed. CRC: Boca Raton, Fl - B84
  • Milne, C.J., Kinniburgh, D.G., Van Riemsdijk, W.H., Tipping, E., Generic NICA-Donnan model parameters for metal-ion binding by humic substances (2003) Environ. Sci. Technol., 37, pp. 958-971
  • Senesi, N., Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals: Part II. The fluorescence spectroscopy approach (1990) Anal. Chim. Acta, 232, pp. 77-106
  • Cabaniss, S.E., Forward modeling of metal complexation by NOM: I. A priori prediction of conditional constants and speciation (2009) Environ. Sci. Technol., 43, pp. 2838-2844
  • Tipping, E., Humic ion-binding model VI: An improved description of the interactions of protons and metal ions with humic substances (1998) Aquat. Geochem., 4, pp. 3-48
  • Kinniburgh, D.G., Van Riemsdijk, W.H., Koopal, L.K., Borkovec, M., Benedetti, M.F., Avena, M.J., Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency (1999) Colloid Surf., A, 151, pp. 147-166
  • Gustafsson, J.P., Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model (2001) J. Colloid Interface Sci., 244, pp. 102-112
  • Orsetti, S., Andrade, E.M., Molina, F.V., Modeling ion binding to humic substances: Elastic polyelectrolyte network model (2010) Langmuir, 26, pp. 3134-3144
  • Benedetti, M.F., Milne, C.J., Kinniburgh, D.G., Van Riemsdijk, W.H., Koopal, L.K., Metal ion binding to humic substances: Application of the non-ideal competitive adsorption model (1995) Environ. Sci. Technol., 29, pp. 446-457
  • Smith, D.S., Kramer, J.R., Multisite metal binding to fulvic acid determined using multiresponse fluorescence (2000) Anal. Chim. Acta, 416, pp. 211-220
  • Bro, R., Exploratory study of sugar production using fluorescence spectroscopy and multi-way analysis (1999) Chemom. Intell. Lab. Syst., 46, pp. 133-147
  • Stedmon, C.A., Bro, R., Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial (2008) Limnol. Oceanogr.: Methods, 6, pp. 572-579
  • Ohno, T., Amirbahman, A., Bro, R., Parallel factor analysis of excitation-emission matrix fluorescence spectra of water soluble soil organic matter as basis for the determination of conditional metal binding parameters (2008) Environ. Sci. Technol., 42, pp. 186-192
  • Santín, C., Yamashita, Y., Otero, X., Álvarez, M., Jaffé, R., Characterizing humic substances from estuarine soils and sediments by excitation-emission matrix spectroscopy and parallel factor analysis (2009) Biogeochemistry, 96, pp. 131-147
  • Ishii, S.K.L., Boyer, T.H., Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A Critical review (2012) Environ. Sci. Technol., 46, pp. 2006-2017
  • Patel-Sorrentino, N., Mounier, S., Benaim, J.Y., Excitation-emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers (2002) Water Res., 36, pp. 2571-2581
  • Stedmon, C.A., Markager, S., Bro, R., Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy (2003) Mar. Chem., 82, pp. 239-254
  • Milne, C.J., Kinniburgh, D.G., Tipping, E., Generic NICA-Donnan model parameters for proton binding by humic substances (2001) Environ. Sci. Technol., 35, pp. 2049-2059
  • Clapp, C.E., Hayes, M.H.B., Simpson, A.J., Kingery, W.L., Chemistry of soil organic matter (2005) Chemical Processes in Soils, pp. 1-150. , Tabatabai, M. A. Sparks, D. L. Soil Science Society of America: Madison, WI
  • Duval, J.F.L., Wilkinson, K.J., Van Leeuwen, H.P., Buffle, J., Humic substances are soft and permeable: Evidence from their electrophoretic mobilities (2005) Environ. Sci. Technol., 39, pp. 6435-6445
  • Dinar, E., Mentel, T.F., Rudich, Y., The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles (2006) Atmos. Chem. Phys., 6, pp. 5213-5224
  • Flory, P.J., Statistical mechanics of swelling of network structures (1950) J. Chem. Phys., 18, pp. 108-111
  • Orsetti, S., Andrade, E.M., Molina, F.V., Application of a constrained regularization method to extraction of affinity distributions: Proton and metal binding to humic substances (2009) J. Colloid Interface Sci., 336, pp. 377-387
  • Milne, C.J., Kinniburgh, D.G., De Wit, J.C.M., Van Riemsdijk, W.H., Koopal, L.K., Analysis of proton binding by a peat humic acid using a simple electrostatic model (1995) Geochim. Cosmochim. Acta, 59, pp. 1101-1112
  • Christl, I., Metzger, A., Heidmann, I., Kretzschmar, R., Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding (2005) Environ. Sci. Technol., 39, pp. 5319-5326
  • Tejedor-Tejedor, M.I., Anderson, M.A., In situ" ATR-Fourier transform infrared studies of the goethite (α-FeOOH)-aqueous solution interface (1986) Langmuir, 2, pp. 203-210
  • Orsetti, S., Quiroga, M.M., Andrade, E.M., Binding of Pb(II) in the system humic acid/goethite at acidic pH (2006) Chemosphere, 65, pp. 2313-2321
  • Lourakis, M., (2013) Levenberg-Marquardt in C/C+2, , http://www.ics.forth.gr/~lourakis/levmar/, (accessed February 24)
  • Matynia, A., Lenoir, T., Causse, B., Spadini, L., Jacquet, T., Manceau, A., Semi-empirical proton binding constants for natural organic matter (2010) Geochim. Cosmochim. Acta, 74, pp. 1836-1851
  • Deshmukh, A.P., Pacheco, C., Hay, M.B., Myneni, S.C.B., Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy (2007) Geochim. Cosmochim. Acta, 71, pp. 3533-3544
  • Kirishima, A., Ohnishi, T., Sato, N., Tochiyama, O., Determination of the phenolic-group capacities of humic substances by non-aqueous titration technique (2009) Talanta, 79, pp. 446-453
  • McKnight, D.M., Wershaw, R.L., Complexation of copper by fulvic acid from the Suwannee River - Effect of counter-ion concentration (1989) Humic Substances in the Suwannee River, Georgia: Interactions, Properties, and Proposed Structures, pp. 59-79. , Averett, R. C. Leenheer, J. A. McKnight, D. M. Thorn, K. A. U.S. Geological Survey: Reston, VA
  • Czerwinski, K.R., Kim, J.I., Rhee, D.S., Buckau, G., Complexation of trivalent actinide ions (Am3+, Cm3 +) with humic acid: The effect of ionic strength (1996) Radiochim. Acta, 72, pp. 179-187
  • Robertson, A.P., (1996), Ph. D. Dissertation, Stanford University, CA; Chakraborty, P., Chakrabarti, C.L., Competition from Cu(II), Zn(II) and Cd(II) in Pb(II) binding to Suwannee River fulvic acid (2008) Water, Air, Soil Pollut., 195, pp. 63-71
  • Puy, J., Galceran, J., Huidobro, C., Companys, E., Samper, N., Garcés, J.L., Mas, F., Conditional affinity spectra of Pb2+-humic acid complexation from data obtained with AGNES (2008) Environ. Sci. Technol., 42, pp. 9289-9295
  • Quan, G., Yan, J., Binding constants of lead by humic and fulvic acids studied by anodic stripping square wave voltammetry (2010) Russ. J. Electrochem., 46, pp. 90-94
  • David, C., Mongin, S., Rey-Castro, C., Galceran, J., Companys, E., Garcés, J.L., Salvador, J., Mas, F., Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions (2010) Geochim. Cosmochim. Acta, 74, pp. 5216-5227
  • Gustafsson, J.P., Tiberg, C., Edkymish, A., Kleja, D.B., Modelling lead(II) sorption to ferrihydrite and soil organic matter (2011) Environ. Chem., 8, pp. 485-492
  • Ahmetli, G., Yel, E., Deveci, H., Bravo, Y., Bravo, Z., Investigation of Pb(II) adsorption onto natural and synthetic polymers (2012) J. Appl. Polym. Sci., 125, pp. 716-724
  • Lin, D., Tian, X., Li, T., Zhang, Z., He, X., Xing, B., Surface-bound humic acid increased Pb2+ sorption on carbon nanotubes (2012) Environ. Pollut., 167, pp. 138-147
  • Saar, R.A., Weber, J.H., Comparison of spectrofluorometry and ion-selective electrode potentiometry for determination of complexes between fulvic acid and heavy-metal ions (1980) Anal. Chem., 52, pp. 2095-2100
  • Liu, A., Gonzalez, R.D., Modeling adsorption of copper(II), cadmium(II) and lead(II) on purified humic acid (2000) Langmuir, 16, pp. 3902-3909
  • Fasfous, I.I., Chakrabarti, C.L., Murimboh, J., Yapici, T., Complexation of lead in model solutions of humic acid: Heterogeneity and effects of competition with copper, nickel, and zinc (2006) Environ. Chem., 3, pp. 276-285
  • Ryan, D.K., Weber, J.H., Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid (1982) Anal. Chem., 54, pp. 986-990
  • Yamashita, Y., Jaffé, R., Characterizing the Interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis (2008) Environ. Sci. Technol., 42, pp. 7374-7379
  • He, Z., Ohno, T., Cade-Menun, B.J., Erich, M.S., Honeycutt, C.W., Spectral and chemical characterization of phosphates associated with humic substances (2006) Soil Sci. Soc. Am. J., 70, p. 1741
  • Hemmingsen, S.L., McGown, L.B., Phase-resolved fluorescence spectral and lifetime characterization of commercial humic substances (1997) Appl. Spectrosc., 51, pp. 921-929
  • Kowalczuk, P., Cooper, W.J., Durako, M.J., Kahn, A.E., Gonsior, M., Young, H., Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Relationships between fluorescence and its components, absorption coefficients and organic carbon concentrations (2010) Mar. Chem., 118, pp. 22-36
  • Lakowicz, J.R., (2006) Principles of Fluorescence Spectroscopy, , 3 rd ed. Springer: New York
  • Park, J.-H., Spectroscopic characterization of dissolved organic matter and its interactions with metals in surface waters using size exclusion chromatography (2009) Chemosphere, 77, pp. 485-494
  • Chen, W., Westerhoff, P., Leenheer, J.A., Booksh, K., Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter (2003) Environ. Sci. Technol., 37, pp. 5701-5710
  • Leenheer, J.A., Croué, J.-P., Peer reviewed: Characterizing aquatic dissolved organic matter (2003) Environ. Sci. Technol., 37, pp. 18A-26A
  • Cory, R.M., McKnight, D.M., Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter (2005) Environ. Sci. Technol., 39, pp. 8142-8149
  • Miller, M., Simone, B., McKnight, D., Cory, R., Williams, M., Boyer, E., New light on a dark subject: Comment (2010) Aquat. Sci., 72, pp. 269-275
  • Hay, M.B., Myneni, S.C.B., Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy (2007) Geochim. Cosmochim. Acta, 71, pp. 3518-3532
  • Nakamoto, K., (2009) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Applications in Coordination, Organometallic, and Bioinorganic Chemistry; Part B., , John Wiley & Sons: Hoboken, NJ
  • Zhang, J., Dai, J., Wang, R., Li, F., Wang, W., Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China (2009) Colloids Surf., A, 335, pp. 194-201
  • Coates, J., Interpretation of Infrared Spectra. A Practical Approach (2000) Encyclopedia of Analyical Chemistry, pp. 10815-10837. , Meyers, R. A. John Wiley & Sons: Chichester, UK
  • Cabaniss, S.E., Shuman, M.S., Combined ion selective electrode and fluorescence quenching detection for copper-dissolved organic matter titrations (1986) Anal. Chem., 58, pp. 398-401
  • Marang, L., Reiller, P.E., Eidner, S., Kumke, M.U., Benedetti, M.F., Combining spectroscopic and potentiometric approaches to characterize competitive binding to humic substances (2008) Environ. Sci. Technol., 42, pp. 5094-5098
  • Alcock, N.W., Tracy, V.M., Waddington, T.C., Acetates and acetato-complexes. Part 2. Spectroscopic studies (1976) J. Chem. Soc., Dalton Trans., pp. 2243-2246
  • Cabaniss, S.E., Quantitative structure-Property relationships for predicting metal binding by organic ligands (2008) Environ. Sci. Technol., 42, pp. 5210-5216
  • Steiner, R.F., Kirby, E.P., Interaction of the ground and excited states of indole derivatives with electron scavengers (1969) J. Phys. Chem., 73, pp. 4130-4135
  • Kumke, M.U., Eidner, S., Fluorescence and energy transfer processes of humic substances and related model compounds in terbium complexes (2005) Humic Substances: Molecular Details and Applications in Land and Water Conservation, pp. 131-152. , Ghabbour, E. A. Davies, G. Taylor & Francis: New York
  • Lavorel, J., Influence of concentration on the absorption spectrum and the action spectrum of fluorescence of dye solutions (1957) J. Phys. Chem., 61, pp. 1600-1605
  • West, W., Pearce, S., The dimeric state of cyanine dyes (1965) J. Phys. Chem., 69, pp. 1894-1903
  • Senesi, N., Loffredo, E., Metal ion complexation by soil humic substances (2005) Chemical Processes in Soils, pp. 563-617. , In, SSSA Book Series; Tabatabai, M. A. Sparks, D. L. Soil Science Society of America: Madison, WI
  • Xia, K., Bleam, W., Helmke, P.A., Studies of the nature of Cu2+ and Pb2+ binding sites in soil humic substances using X-ray absorption spectroscopy (1997) Geochim. Cosmochim. Acta, 61, pp. 2211-2221
  • Witwicki, M., Jerzykiewicz, M., Jaszewski, A.R., Jezierska, J., Ozarowski, A., Influence of Pb(II) Ions on the EPR properties of the semiquinone radicals of humic acids and model compounds: High field EPR and relativistic DFT studies (2009) J. Phys. Chem. A, 113, pp. 14115-14122

Citas:

---------- APA ----------
Orsetti, S., Marco-Brown, J.L., Andrade, E.M. & Molina, F.V. (2013) . Pb(II) binding to humic substances: An equilibrium and spectroscopic study. Environmental Science and Technology, 47(15), 8325-8333.
http://dx.doi.org/10.1021/es400999q
---------- CHICAGO ----------
Orsetti, S., Marco-Brown, J.L., Andrade, E.M., Molina, F.V. "Pb(II) binding to humic substances: An equilibrium and spectroscopic study" . Environmental Science and Technology 47, no. 15 (2013) : 8325-8333.
http://dx.doi.org/10.1021/es400999q
---------- MLA ----------
Orsetti, S., Marco-Brown, J.L., Andrade, E.M., Molina, F.V. "Pb(II) binding to humic substances: An equilibrium and spectroscopic study" . Environmental Science and Technology, vol. 47, no. 15, 2013, pp. 8325-8333.
http://dx.doi.org/10.1021/es400999q
---------- VANCOUVER ----------
Orsetti, S., Marco-Brown, J.L., Andrade, E.M., Molina, F.V. Pb(II) binding to humic substances: An equilibrium and spectroscopic study. Environ. Sci. Technol. 2013;47(15):8325-8333.
http://dx.doi.org/10.1021/es400999q