Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Heterogeneous photocatalytic reduction of As(V) and As(III) at different concentrations over TiO 2 under UV light in deoxygenated aqueous suspensions is described. For the first time, As(0) was unambiguously identified together with arsine (AsH3) as reaction products. As(V) reduction requires the presence of an electron donor (methanol in the present case) and takes place through the hydroxymethyl radical formed from methanol oxidation by holes or hydroxyl radicals. On the contrary, As(III) reduction takes place through direct reduction by the TiO 2-conduction band electrons. Detailed mechanisms for the photocatalytic processes are proposed. Although reduction to solid As(0) is convenient for purposes of As removal from water as a deposit on TiO 2, attention must be paid to formation of AsH 3, one of the most toxic forms of As, and strategies for AsH3 treatment should be considered. © 2012 American Chemical Society.

Registro:

Documento: Artículo
Título:TiO 2-photocatalytic reduction of pentavalent and trivalent arsenic: Production of elemental arsenic and arsine
Autor:Levy, I.K.; Mizrahi, M.; Ruano, G.; Zampieri, G.; Requejo, F.G.; Litter, M.I.
Filiación:Gerencia Química, Comisión Nacional de Energía Atómica, Avenida General Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, 1033 Ciudad Autónoma de Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, 1428, Ciudad Autónoma de Buenos Aires, Argentina
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Diag. 113 y 64, 1900 La Plata, Argentina
Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 Bariloche, Argentina
Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche, Argentina
Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de General San Martín, Peatonal Belgrano 3563, 1650 San Martín, Provincia de Buenos Aires, Argentina
Palabras clave:Aqueous suspensions; Conduction band electrons; Direct Reduction; Electron donors; Hydroxyl radicals; Methanol Oxidation; Photocatalytic process; Photocatalytic reduction; TiO; Arsenic; Methanol; Suspensions (fluids); Titanium dioxide; Water treatment; arsenic; arsine; hydroxyl radical; methanol; titanium dioxide; aqueous solution; arsenic; catalysis; concentration (composition); electron; hydroxyl radical; methanol; oxidation; photodegradation; pollutant removal; reduction; titanium; water treatment; aqueous solution; article; concentration (parameters); electron; photocatalysis; reduction; solid; ultraviolet radiation; X ray absorption spectroscopy; Arsenic; Arsenicals; Catalysis; Oxidation-Reduction; Photochemical Processes; Titanium; Ultraviolet Rays; Water Pollutants, Chemical
Año:2012
Volumen:46
Número:4
Página de inicio:2299
Página de fin:2308
DOI: http://dx.doi.org/10.1021/es202638c
Título revista:Environmental Science and Technology
Título revista abreviado:Environ. Sci. Technol.
ISSN:0013936X
CODEN:ESTHA
CAS:arsenic, 7440-38-2; arsine, 31219-53-1, 7784-42-1; hydroxyl radical, 3352-57-6; methanol, 67-56-1; titanium dioxide, 1317-70-0, 1317-80-2, 13463-67-7, 51745-87-0; Arsenic, 7440-38-2; Arsenicals; Titanium, 7440-32-6; Water Pollutants, Chemical; arsine, 7784-42-1; titanium dioxide, 13463-67-7
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0013936X_v46_n4_p2299_Levy

Referencias:

  • Litter, M.I., Morgada, M.E., Bundschuh, J., Possible treatments for arsenic removal in Latin American waters for human consumption (2010) Environ. Pollut., 158, pp. 1105-1118
  • Bundschuh, J., Litter, M., Ciminelli, V., Morgada, M.E., Cornejo, L., Garrido Hoyos, S., Hoinkis, J., Bhattacharya, P., Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Iberoamerica-A critical analysis (2010) Water Res., 44, pp. 5828-5845
  • (2004) Guidelines for Drinking Water Quality Recommendations, 1. , 3rd ed. World Health Organization: Geneva
  • Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., Environmental applications of semiconductor photocatalysis (1995) Chem. Rev., 95, pp. 69-96
  • Litter, M.I., Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems (1999) Applied Catalysis B: Environmental, 23 (2-3), pp. 89-114. , DOI 10.1016/S0926-3373(99)00069-7, PII S0926337399000697
  • Litter, M.I., Treatment of chromium, mercury, lead, uranium and arsenic in water by heterogeneous photocatalysis (2009) Adv. Chem. Eng., 36, pp. 37-67
  • Yang, H., Lin W., -Y., Rajeshwar, K., Homogeneous and heterogeneous photocatalytic reactions involving As(III and As(V) species in aqueous media (1999) J. Photochem. Photobiol., A, 123, pp. 137-143
  • Bissen, M., Vieillard-Baron, M.-M., Schindelin, A.J., Frimmel, F.H., TiO 2-catalyzed photooxidation of arsenite to arsenate in aqueous samples (2001) Chemosphere, 44 (4), pp. 751-757. , DOI 10.1016/S0045-6535(00)00489-6, PII S0045653500004896
  • Lee, H., Choi, W., Photocatalytic oxidation of arsenite in TiO 2 suspension: Kinetics and mechanisms (2002) Environmental Science and Technology, 36 (17), pp. 3872-3878. , DOI 10.1021/es0158197
  • Jayaweera, P.M., Godakumbura, P.I., Pathiratne, K.A.S., Photocatalytic oxidation of As(III) to As(V) in aqueous solutions: A low cost pre-oxidative treatment for total removal of arsenic from water (2003) Current Science, 84 (4), pp. 541-543
  • Ryu, J., Choi, W., Effects of TiO 2 surface modifications on photocatalytic oxidation of arsenite: The role of superoxides (2004) Environmental Science and Technology, 38 (10), pp. 2928-2933
  • Dutta, P.K., Pehkonen, S.O., Sharma, V.K., Ray, A.K., Photocatalytic oxidation of arsenic (III): Evidence of hydroxyl radicals (2005) Environmental Science and Technology, 39 (6), pp. 1827-1834. , DOI 10.1021/es0489238
  • Pena, M.E., Korfiatis, G.P., Patel, M., Lippincott, L., Meng, X., Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide (2005) Water Research, 39 (11), pp. 2327-2337. , DOI 10.1016/j.watres.2005.04.006, PII S004313540500148X
  • Ferguson, M.A., Hoffmann, M.R., Hering, J.G., TiO 2-photocatalyzed As(III) oxidation in aqueous suspensions: Reaction kinetics and effects of adsorption (2005) Environmental Science and Technology, 39 (6), pp. 1880-1886. , DOI 10.1021/es048795n
  • Yoon, S.-H., Lee, J.H., Oxidation mechanism of As(III) in the UV/TiO 2 system: Evidence for a direct hole oxidation mechanism (2005) Environmental Science and Technology, 39 (24), pp. 9695-9701. , DOI 10.1021/es051148r
  • Xu, T., Kamat, P.V., O'Shea, K.E., Mechanistic evaluation of arsenite oxidation in TiO 2 assisted photocatalysis (2005) Journal of Physical Chemistry A, 109 (40), pp. 9070-9075. , DOI 10.1021/jp054021x
  • Zhang, F.-S., Itoh, H., Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO 2 adsorbent (2006) Chemosphere, 65 (1), pp. 125-131. , DOI 10.1016/j.chemosphere.2006.02.027, PII S0045653506001974
  • Ferguson, M.A., Hering, J.G., TiO 2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor (2006) Environmental Science and Technology, 40 (13), pp. 4261-4267. , DOI 10.1021/es0524853
  • Ryu, J., Choi, W., Photocatalytic oxidation of arsenite on TiO 2: Understanding the controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors (2006) Environmental Science and Technology, 40 (22), pp. 7034-7039. , DOI 10.1021/es0612403
  • Leng, W.H., Cheng, X.F., Zhang, J.Q., Cao, C.N., Comment on "Photocatalytic oxidation of arsenite on TiO 2: Understanding the controversial oxidation mechanism involving superoxides and the effect of alternative electron acceptors" [1] (2007) Environmental Science and Technology, 41 (17), pp. 6311-6312. , DOI 10.1021/es070349n
  • Fostier, A.H., Pereira, S.M.S., Rath, S., Guimaraes, J.R., Arsenic removal from water employing heterogeneous photocatalysis with TiO 2 immobilized in PET bottles (2008) Chemosphere, 72, pp. 319-324
  • Yoon, S., Oh, S.-E., Yang, J.E., Yu, S., Pak, D., TiO 2 photocatalytic oxidation mechanism of As(III) (2009) Environ. Sci. Technol., 43, pp. 864-869
  • Li, Q., Easter, N.J., Shang, J.K., As(III removal by palladiummodified nitrogen-doped titanium oxide nanoparticle photocatalyst (2009) Environ. Sci. Technol., 43, pp. 1534-1539
  • Tsimas, E.S., Tyrovola, K., Nikolaos, P., Xekoukoulotakis, N.P., Nikolaidis, N.P., Diamadopoulos, E., Mantzavinos, D., Simultaneous photocatalytic oxidation of As(III and humic acid in aqueous TiO 2 suspensions (2009) J. Hazard. Mater., 169, pp. 376-385
  • Nguyen, T.V., Vigneswaran, S., Ngo, H.H., Kandasamy, J., Choi, H.C., Arsenic removal by photo-catalysis hybrid system (2008) Separation and Purification Technology, 61 (1), pp. 44-50. , DOI 10.1016/j.seppur.2007.09.015, PII S1383586607004261
  • Sharma, V.K., Sohn, M., Aquatic arsenic: Toxicity, speciation, transformations, and remediation (2009) Environ. Int., 35, pp. 743-759
  • Xu, Z., Meng, X., Size effects of nanocrystalline TiO 2 on As(V) and As(III adsorption and As(III photooxidation) (2009) J. Hazard. Mater., 168, pp. 747-752
  • Morgada De Boggio, M.E., Levy, I.K., Mateu, M., Bhattacharya, P., Bundschuh, J., Litter, M.I., Low-cost technologies based on heterogeneous photocatalysis and zerovalent iron for arsenic removal in the Chacopampean plain, Argentina (2010) Natural Arsenic in Groundwater of Latin America-Occurrence, health impact and remediation; Bundschuh, pp. 677-686. , J., Armienta, M. A., Bhattacharya, P., Matschullat, J., Birkle, P., Mukherjee, A. B., Eds.; Balkema Publisher: Lisse
  • Choi, W., Yeo, J., Ryu, J., Tachikawa, T., Majima, T., Photocatalytic oxidation mechanism of As(III on TiO 2: Unique role of As(III as a charge recombinant species (2010) Environ. Sci. Technol., 44, pp. 9099-9104
  • Litter, M.I., Alarcón-Herrera, M.T., Arenas, M.J., Armienta, M.A., Avilés, M., Cáceres, R.E., Cipriani, H.N., Pérez-Carrera, A., Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America (2011) Sci. Total Environ., , in press
  • Fei, H., Leng, W., Li, X., Cheng, X., Xu, Y., Zhang, J., Cao, C., Photocatalytic Oxidation of Arsenite over TiO 2: Is superoxide the main oxidant in normal air-saturated aqueous solutionş (2011) Environ. Sci. Technol., 45, pp. 4532-4539
  • Martin, S.T., Herrmann, H., Choi, W., Hoffmann, M.R., Timeresolved microwave conductivity (TRMC 1. TiO 2 photoactivity and size quantization (1994) J. Chem. Soc. Faraday Trans., 90, pp. 3315-3322
  • Wardman, P.J., Reduction potentials of one-electron couples involving free radicals in aqueous solution (1989) Phys. Chem. Ref. Data, 18, pp. 1637-1755
  • Kläning, U.K., Bielski, B.H.J., Sehesteds, K., Arsenic(IV) Pulse-radiolysis study (1989) Inorg. Chem., 28, pp. 2717-2724
  • Lenoble, V., Deluchat, V., Serpaud, B., Bollinger, J.-C., Arsenite oxidation and arsenate determination by the molybdene blue method (2003) Talanta, 61, pp. 267-276
  • Rasmussen, L., Jebjerg Andersen, K., https://docs.google.com/viewer?url=http%3A%2F%2Fwww.who. int%2Fentity%2Fwater_sanitation_health%2Fdwq%2Farsenicun2.pdf, Environmental health and human exposure assessment Chapter 2 World Health Organization in (accessed October 26 2010); Gutzeit, H., (1891) Pharm. Ztg., 36, pp. 748-756
  • (1976) Standard Methods for the Examination of Water and Wastewater, pp. 284-286. , 14th ed.;Rand M. C., Greenberg, A. E., Taras, M. J., Eds.; American Public Health Association, American Water Works Association, Water Pollution Control Federation (APHA-AWWA-WPCF): Washington D.C
  • (1976) Standard Methods for the Examination of Water and Wastewater, pp. 283-284. , 14th ed. Rand M. C., Greenberg, A. E., Taras, M. J., Eds.; American Public Health Association, American Water Works Association, Water Pollution Control Federation (APHA-AWWA-WPCF): Washington D.C
  • Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., Mullenberg, G.E., (1978) Handbook of X-Ray Photoelectron Spectroscopy, , Perkin Elmer Corporation: Eden Prairie MN
  • Santhanam, K.S.V., Sundaresan, N.S., (1985) Arsenic Standard Potentials in Aqueous Solutions, pp. 162-172. , Bard, A. J., Parsons, R., Eds.; Marcel Dekker: New York
  • Wilke, M., Farges, F., Petit, P.-E., Brown Jr., G.E., Martin, F., Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study (2001) American Mineralogist, 86 (5-6), pp. 714-730
  • Lamberti, C., Bordiga, S., Bonino, F., Prestipino, C., Berlier, G., Capello, L., D'Acapito, F., Zecchina, A., Determination of the oxidation and coordination state of copper on different Cu-based catalysts by XANES spectroscopy in situ or in operando conditions (2003) Phys. Chem. Chem. Phys., 5, pp. 4502-4509
  • Jegadeesan, G., Al-Abed, S.R., Sundaram, V., Choi, H., Scheckel, K.G., Dionysiou, D.D., Arsenic sorption on TiO 2 nanoparticles: Size and crystallinity effects (2010) Water Res., (44), pp. 965-973
  • Bearden, J.A., Burr, A.F., Reevaluation of X-ray atomic energy levels (1967) Rev. Mod. Phys., 39, pp. 25-142
  • Quinn, R., Mebrahtu, T., Dahl, T.A., Lucrezi, F.A., Toseland, B.A., The role of arsine in the deactivation of methanol synthesis catalysts (2004) Appl. Catal., A, 264, pp. 103-109
  • James-Smith, J., Cauzid, J., Testemale, D., Liu, W., Hazeman, J., Proux, O., Etschmann, B., Brugger, J., Arsenic speciation in fluid inclusions using micro-beam X-ray absorption spectroscopy (2010) Am. Mineral., (95), pp. 921-932
  • Wang, C., Pagel, R., Bahnemann, D.W., Dohrmann, J.K., Quantum yield of formaldehyde formation in the presence of colloidal TiO 2-based photocatalysts: Effect of intermittent illumination, platinization, and deoxygenation (2004) J. Phys. Chem. B, 108, pp. 14082-14092
  • Zepp, R.G., Hoigne, J., Bader, H., Nitrate-induced photooxidation of trace organic chemicals in water (1987) Environmental Science and Technology, 21 (5), pp. 443-450
  • Moser, J., Punchihewa, S., Infelta, P.P., Gratzel, M., Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates (1991) Langmuir, 7, pp. 3012-3018
  • Daniels, M., The radiation chemistry of arsenite. Part II. Oxygen-free solution (1962) J. Phys. Chem., pp. 1475-1477
  • Muller, J.C., Ferradini, C., Pucheault, J., Radiolyse àtrès haute intensité des solutions dársenite (1972) Radiochem. Radioanal. Letters, 10, pp. 53-58
  • Bejan, D., Bunce, N.J., Electrochemical reduction of As(III and As(V in acidic and basic solutions (2003) J. Appl. Electrochem., 33, pp. 483-489
  • Breitenkamp, M., Henglein, A., Lilie, J., Mechanism of the reduction of lead ions in aqueous solution (a pulse radiolysis study) (1976) Ber. Bunsen-Ges., 80, pp. 973-979
  • Allred, A.L., Hensley Jr., A.L., Electronegativities of nitrogen, phosphorous, arsenic, antimony and bismuth (1961) J. Inorg. Nucl. Chem., 17, pp. 43-54
  • Arango, A.C., Carter, S.A., Brock, P.J., Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO 2 nanoparticles (1999) Applied Physics Letters, 74 (12), pp. 1698-1700
  • Imanishi, A., Tsuji, E., Nakato, Y., Dependence of the work function of TiO 2 (Rutile) on crystal faces, studied by a scanning auger microprobe (2007) Journal of Physical Chemistry C, 111 (5), pp. 2128-2132. , DOI 10.1021/jp0668403
  • Behar, D., Rabani, J., Kinetics of hydrogen production upon reduction of aqueous TiO 2 nanoparticles catalyzed by Pd 0, Pt 0, or Au 0 coatings and an unusual hydrogen abstraction; steady state and pulse radiolysis study (2006) Journal of Physical Chemistry B, 110 (17), pp. 8750-8755. , DOI 10.1021/jp060971m
  • Fernandez-Vega, A., Feliu, J.M., Aldaz, A., Heterogeneous electrocatalysis on well-defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms (1991) J. Electroanal. Chem., 305, pp. 229-240
  • Laroff, G.P., Fessenden, R.W., Equilibrium and kinetics of the acid dissociation of several hydroxyalkyl radicals (1973) J. Phys. Chem., 77, pp. 1283-1288
  • Simic, M., Neta, P., Hayon, E., Reactions of hydroxyl radicals with unsaturated aliphatic alcohols in aqueous solution. A spectroscopic and electron spin resonance radiolysis study (1973) J. Phys. Chem., 77, pp. 2662-2667
  • Quinn, R., Dahl, T.A., Diamond, B.W., Toseland, B.A., Removal of arsine from synthesis gas using a copper on carbon adsorbent (2006) Industrial and Engineering Chemistry Research, 45 (18), pp. 6272-6278. , DOI 10.1021/ie060176v
  • Seredych, M., Mahle, J., Peterson, G., Bandosz, T.J., Interactions of arsine with nanoporous carbons: Role of heteroatoms in the oxidation process at ambient conditions (2010) J. Phys. Chem. C, 114, pp. 6527-6533

Citas:

---------- APA ----------
Levy, I.K., Mizrahi, M., Ruano, G., Zampieri, G., Requejo, F.G. & Litter, M.I. (2012) . TiO 2-photocatalytic reduction of pentavalent and trivalent arsenic: Production of elemental arsenic and arsine. Environmental Science and Technology, 46(4), 2299-2308.
http://dx.doi.org/10.1021/es202638c
---------- CHICAGO ----------
Levy, I.K., Mizrahi, M., Ruano, G., Zampieri, G., Requejo, F.G., Litter, M.I. "TiO 2-photocatalytic reduction of pentavalent and trivalent arsenic: Production of elemental arsenic and arsine" . Environmental Science and Technology 46, no. 4 (2012) : 2299-2308.
http://dx.doi.org/10.1021/es202638c
---------- MLA ----------
Levy, I.K., Mizrahi, M., Ruano, G., Zampieri, G., Requejo, F.G., Litter, M.I. "TiO 2-photocatalytic reduction of pentavalent and trivalent arsenic: Production of elemental arsenic and arsine" . Environmental Science and Technology, vol. 46, no. 4, 2012, pp. 2299-2308.
http://dx.doi.org/10.1021/es202638c
---------- VANCOUVER ----------
Levy, I.K., Mizrahi, M., Ruano, G., Zampieri, G., Requejo, F.G., Litter, M.I. TiO 2-photocatalytic reduction of pentavalent and trivalent arsenic: Production of elemental arsenic and arsine. Environ. Sci. Technol. 2012;46(4):2299-2308.
http://dx.doi.org/10.1021/es202638c