Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Glyphosate is a non-selective, broad spectrum, post-emergent herbicide widely used in weed control. Aminomethylphosphonic acid (AMPA) is one of the main products of biodegradation of glyphosate in natural systems before its ultimate mineralization and also the breakdown product of more complex phosphonates such as nitrilotris-(methylenephosphonic acid). The adsorption isotherms and surface coverage of AMPA and glyphosate (N-phosphomethylglycine, PMG) in aqueous suspensions of goethite as a function of pH were measured. Electrophoretic mobility curves for the PMG/goethite system were also determined. The ATR-FTIR interfacial spectra of the surface complexes of AMPA and PMG onto goethite were analyzed as a function of the pH and the surface coverage. The phosphonate moiety of these two ligands coordinates to the iron oxide surface with similar structures as the methylphosphonic acid despite the presence of the amino and/or carboxylate groups of their molecules. Two predominating complexes have been identified where the phosphonate group in PMG or AMPA bonds monodentately or bridges bidentately to the surface of iron oxide in an inner sphere mode, while the carboxylate and amino group are noncoordinated to the surface. The stability constants of the surface complexes ≡ FeO-P(O)(OH)-R, ≡FeO-P(O)2-R, and (≡FeO) 2-P(O)-R were calculated using the constant capacitance model.

Registro:

Documento: Artículo
Título:Aminomethylphosphonic acid and glyphosate adsorption onto goethite: A comparative study
Autor:Barja, B.C.; Dos Santos Afonso, M.
Filiación:Departamento de Quimica Inorganica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EHA) Buenos Aires, Argentina
Palabras clave:Adsorption; Biodegradation; Molecules; pH; Product development; Suspensions (fluids); Weed control; Aminomethylphosphonic acid (AMPA); Glyphosate; Mineralization; Phosphonates; Organic acids; aminomethylphosphonic acid; ferric hydroxide; glyphosate; herbicide; phosphonic acid derivative; goethite; adsorption; article; complex formation; electrophoretic mobility; Fourier transformation; infrared spectroscopy; ionic strength; pH; soil; weed control; Adsorption; Glycine; Herbicides; Iron; Iron Compounds; Phosphonic Acids; Temperature
Año:2005
Volumen:39
Número:2
Página de inicio:585
Página de fin:592
DOI: http://dx.doi.org/10.1021/es035055q
Título revista:Environmental Science and Technology
Título revista abreviado:Environ. Sci. Technol.
ISSN:0013936X
CODEN:ESTHA
CAS:aminomethylphosphonic acid, 1066-51-9; ferric hydroxide, 11113-66-9, 12022-37-6, 12181-28-1, 1309-33-7, 1310-14-1, 1317-60-8, 1317-63-1; glyphosate, 1071-83-6; aminomethylphosphonic acid; Glycine, 56-40-6; glyphosate, 1071-83-6; goethite, 1310-14-1; Herbicides; Iron Compounds; Iron, 7439-89-6; Phosphonic Acids
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0013936X_v39_n2_p585_Barja

Referencias:

  • (2000) Ullmann's Encyclopedia of Industrial Chemistry, , Wiley & Sons: New York
  • Barja, B.C., Herszaje, J., Dos Santos Afonso, M., Iron(III)-phosphonates complexes (2001) Polyhedron, 20, pp. 1821-1830
  • Franz, J., Mao, M., Siroski, J., (1997) Glyphosate: A Unique Global Herbicide, , ACS Monograph 189; American Chemical Society: Washington, DC
  • Hance, R., Adsorption of glyphosate by soils (1976) J. Pestic. Sci., 7, pp. 363-366
  • Shoval, S., Yariv, S., The interaction between roundup (glyphosate) and montmorillonite. Part I, Infrared study of the sorption of glyphosate by montmorillonite (1979) Clays Clay Miner., 27, pp. 19-28
  • Glass, R.L., Adsorption of glyphosate by soils and clay minerals (1987) J. Agric. Food Chem., 35, pp. 497-500
  • McConnell, J.S., Hossner, L.R., X-ray diffraction and infrared spectroscopic studies of adsorbed glyphosate (1989) J. Agric. Food Chem., 37, pp. 555-560
  • Morillo, E., Undabeytia, T., Maqueda, C., Adsorption of glyphosate on the clay mineral montmorillonite: Effect of Cu(II) in solution and adsorbed on the mineral (1997) Environ. Sci. Technol., 31, pp. 3588-3592
  • Nowack, B., Stone, A.T., Adsorption of phosphonates onto the goethite-water interface (1999) J. Colloid Interface Sci., 214, pp. 20-30
  • Gimsing, A.L., Borggaard, O.K., Effect of phosphate on the adsorption of glyphosate on soils, clay minerals and oxides (2002) Int. J. Environ. Anal. Chem., 8-9, pp. 545-552
  • Gimsing, A.L., Borggaard, O.K., Competitive adsorption of glyphosate and phosphate on clay minerals and oxides (2002) Clay Miner., 37, pp. 509-515
  • Morillo, E., Undabeytia, T., Maqueda, C., Ramos, A., The effect of dissolved glyphosate upon the sorption of copper by three selected soils (2002) Chemosphere, 47, pp. 747-752
  • Hill Jr., H.H., Competitive sorption between glyphosate and inorganic phosphate on clay minerals and low organic matter soils (2001) J. Radioanal. Nucl. Chem., 249, pp. 390-396
  • McBride, M., Kung, K., Complexation of glyphosate and related ligands with iron(III) (1989) Soil Sci. Soc. Am. J., 53, pp. 1668-1673
  • Sheals, J., Sjöberg, S., Persson, P., Adsorption of glyphosate on goethite: Molecular characterization of surface complexes (2002) Environ. Sci. Technol., 36, pp. 3090-3095
  • Barja, B.C., Tejedor-Tejedor, M.I., Anderson, M.A., Complexation of methylphosphonic acid with the surface of goethite particles in aqueous solution (1999) Langmuir, 15, pp. 2316-2321
  • Atkinson, R.J., Posner, A.M., Quirk, J.P., Crystal nucleation in Fe(III) solutions and hydroxide gels (1968) J. Inorg. Nucl. Chem., 30, pp. 2371-2378
  • Tejedor-Tejedor, M.I., Anderson, M.A., "In situ" ATR-Fourier transform infrared studies of the goethite (α-FeOOH)-aqueous solution interface (1986) Langmuir, 2, pp. 203-210
  • Tejedor-Tejedor, M.I., Anderson, M.A., The protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility (1990) Langmuir, 6, pp. 602-611
  • Stumm, W., (1992) Chemistry of the Solid-Water Interface, , Wiley & Sons: New York
  • Wozniak, M., Nowogrocki, G., Acidites et complexes des acides (alkyl- et aminoalkyl-) phosphoniques. I: Determination potentiometrique des constantes d'acidite par affinement multiparametrique: Prise en compte de l'impurete carbonate (1978) Talanta, 25, pp. 633-641
  • Barja, B., Dos Santos Afonso, M., An ATR-FTIR study of glyphosate and its Fe(III) complex in aqueous solution (1998) Environ. Sci. Technol., 32, pp. 3331-3335
  • Novak, A., Cotrait, M., Étude par spectroscopie infrarouge de la N-méthylglycine (sarcosine) et de quelques dérivés a l'état solide (1966) Ann. Chim., 1, pp. 263-270
  • Garrigou-Lagrange, Ch., Destrade, C., Étude par spectrométrie infrarouge de l'acide aminométhylphosphonique (1970) J. Chim. Phys., 67, pp. 1646-1656
  • Shoval, S., Yariv, S., Infrared study of the fine structure of glyphosate and roundup (1981) Agrochimica, 25 (5-6), pp. 377-386
  • Cornell, R.M., Schwertmann, U., (1996) The Iron Oxides, , VCH Publishers: New York
  • Sprankle, P., Meggitt, W.F., Penner, D., Rapid inactivation of glyphosate in the soil (1975) Weed Sci., 23, pp. 224-228
  • Sprankle, P., Meggitt, W.F., Penner, D., Adsorption, mobility, and microbial degradation of glyphosate in the soil (1975) Weed Sci., 23, pp. 229-234
  • Newton, M., Horner, L.M., Cowell, J.E., White, D.E., Cole, E.C., Dissipation of glyphosate and aminomethylphosphonic acid in North American Forests (1994) J. Agric. Food Chem., 42, pp. 1795-1802
  • Crisanto, T., Sanchez-Martin, M.J., Sanchez-Camazano, M., Mobility of pesticides in soils. Influence of soil properties and pesticide structure (1994) Toxicol. Environ. Chem., 45, pp. 97-104
  • Roy, D.N., Konar, S.K., Banerjee, S., Charles, D.A., Thompson, D.G., Prasad, R., Persistence, movement, and degradation of glyphosate in selected Canadian boreal forest soils (1989) J. Agric. Food Chem., 37, pp. 437-440
  • Zaranyika, M.F., Nyandoro, M.G., Degradation of glyphosate in the aquatic environment: An enzymic kinetic model that takes into account microbial degradation of both free and colloidal (or sediment) particle adsorbed glyphosate (1993) J. Agric. Food Chem., 41, pp. 838-842
  • Rueppel, M.L., Brightwell, B.B., Schaefer, J., Marvel, J.T., Metabolism and degradation of glyphosate in soil and water (1977) J. Agric. Food Chem., 25, pp. 517-528

Citas:

---------- APA ----------
Barja, B.C. & Dos Santos Afonso, M. (2005) . Aminomethylphosphonic acid and glyphosate adsorption onto goethite: A comparative study. Environmental Science and Technology, 39(2), 585-592.
http://dx.doi.org/10.1021/es035055q
---------- CHICAGO ----------
Barja, B.C., Dos Santos Afonso, M. "Aminomethylphosphonic acid and glyphosate adsorption onto goethite: A comparative study" . Environmental Science and Technology 39, no. 2 (2005) : 585-592.
http://dx.doi.org/10.1021/es035055q
---------- MLA ----------
Barja, B.C., Dos Santos Afonso, M. "Aminomethylphosphonic acid and glyphosate adsorption onto goethite: A comparative study" . Environmental Science and Technology, vol. 39, no. 2, 2005, pp. 585-592.
http://dx.doi.org/10.1021/es035055q
---------- VANCOUVER ----------
Barja, B.C., Dos Santos Afonso, M. Aminomethylphosphonic acid and glyphosate adsorption onto goethite: A comparative study. Environ. Sci. Technol. 2005;39(2):585-592.
http://dx.doi.org/10.1021/es035055q