Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A photoelectrocatalytic reactor containing titania-coated titanium electrodes was employed to degrade solutions of formic acid (2 mmol dm-3) in 0.01 mol dm-3 NaCl. Reaction rates were increased above that observed for a purely photocatalytic experiment by operating at applied potentials of at least +1.0 V (versus saturated calomel electrode). The kinetics of photodegradation at +1.0 V was modeled effectively using a Langmuir - Hinshelwood-Hougen-Watson expression. Unexpected results were obtained when only the background electrolyte was passed through the reactor. During initial recirculation of this solution with no UV illumination and no applied potential, the pH increased from .6.5 to 9, suggesting ion exchange of chloride ions with hydroxyl ions from the catalyst surface. However, when UV illumination was initiated with an applied potential, the pH decreased to 3.5-4.2, depending on the magnitude of the potential. The cause of this behavior is not known, although there are several explanations. Addition of formic acid to this system buffered the pH near 3, producing the highest rate of degradation at an applied potential of +1.0 V. When the formic acid test solution was adjusted to higher initial pH values, the reaction rate was unaffected until the pH increased above 5, at which point the rate decreased. A photoelectrocatalytic reactor containing titania-coated titanium electrodes was employed to degrade solutions of formic acid (2 mmol dm-3) in 0.01 mol dm-3 NaCl. Reaction rates were increased above that observed for a purely photocatalytic experiment by operating at applied potentials of at least + 1.0 V (versus saturated calomel electrode). The kinetics of photodegradation at + 1.0 V was modeled effectively using a Langmuir-Hinshelwood-Hougen-Watson expression. Unexpected results were obtained when only the background electrolyte was passed through the reactor. During initial recirculation of this solution with no UV illumination and no applied potential, the pH increased from 6.5 to 9, suggesting ion exchange of chloride ions with hydroxyl ions from the catalyst surface. However, when UV illumination was initiated with an applied potential, the pH decreased to 3.5-4.2, depending on the magnitude of the potential. The cause of this behavior is not known, although there are several explanations. Addition of formic acid to this system buffered the pH near 3, producing the highest rate of degradation at an applied potential of + 1.0 V. When the formic acid test solution was adjusted to higher initial pH values, the reaction rate was unaffected until the pH increased above 5, at which point the rate decreased.

Registro:

Documento: Artículo
Título:Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor
Autor:Candal, R.J.; Zeltner, W.A.; Anderson, M.A.
Filiación:Water Chemistry Program, University of Wisconsin - Madison, 660 North Park Street, Madison, WI 53706, United States
INQUIMAE, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, CP 1428, Argentina
Palabras clave:Formic acid; Langmuir-Hinshelwood-Hougen-Watson expression; Photodegradation; Photoelectrocatalytic reactor; Saline solutions; Catalysis; Chemical reactors; Degradation; Electric potential; Electrodes; Ion exchange; Oxidation; pH; Photocurrents; Rate constants; Sodium chloride; Titanium; Organic acids; formic acid; sodium chloride; article; ion exchange; kinetics; oxidation; pH; photodegradation; reaction analysis; reaction time; reactor
Año:2000
Volumen:34
Número:16
Página de inicio:3443
Página de fin:3451
DOI: http://dx.doi.org/10.1021/es991024c
Título revista:Environmental Science and Technology
Título revista abreviado:Environ. Sci. Technol.
ISSN:0013936X
CODEN:ESTHA
CAS:formic acid, 64-18-6, 71-47-6; sodium chloride, 7647-14-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0013936X_v34_n16_p3443_Candal

Referencias:

  • Fox, M.A., Dulay, M.T., (1993) Chem. Rev., 93, pp. 341-357
  • Kamat, P.V., (1993) Chem. Rev., 93, pp. 267-300
  • Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., (1995) Chem. Rev., 95, pp. 69-96
  • (1998) J. Adv. Oxidat. Technol., 3, pp. 3-4. , Special issue dedicated to the Third International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air, Orlando, FL, September 23-26, 1997
  • Ollis, D.F., Pelizzetti, E., Serpone, N., (1991) Environ. Sci. Technol., 25, pp. 1522-1529
  • Kim, D.H., Anderson, M.A., (1994) Environ. Sci. Technol., 28 (3), pp. 479-483
  • Kim, D.H., Anderson, M.A., Zeltner, W.A., (1995) J. Environ. Engr., ASCE, 121 (8), pp. 590-594
  • Vinodgopal, K., Hotchandani, S., Kamat, P.V., (1993) J. Phys. Chem., 97, pp. 9040-9044
  • Vinodgopal, K., Bedja, I., Kamat, P.V., (1996) Chem. Mater., 8 (8), pp. 2180-2187
  • Vinodgopal, K., Kamat, P.V., (1996) Chemtech, 26, pp. 18-22
  • Abdullah, M., Low, G.K.-C., Matthews, R.W., (1990) J. Phys. Chem., 94, pp. 6820-6825
  • Burns, R.A., Crittenden, J.C., Hand, D.W., Selzer, V.H., Sutter, L.L., Salman, S.R., (1999) J. Environ. Engr. ASCE, 125 (1), pp. 77-85
  • Kim, D.H., Anderson, M.A., (1996) J. Photochem. Photobiol. A: Chem., 94, pp. 221-229
  • Candal, R.J., Zeltner, W.A., Anderson, M.A., (1998) J. Adv. Oxidat. Technol., 3, pp. 270-276
  • Torresi, R.M., Camara, O.R., De Pauli, C.P., Giordano, M.C., (1987) Electrochim. Acta, 32 (9), pp. 1291-1301
  • Candal, R.J., Zeltner, W.A., Anderson, M.A., (1999) J. Environ. Engr., ASCE, 125 (10), pp. 906-912
  • Matsumura, T., Smith, J.M., (1970) AIChE J., 16, pp. 1064-1071
  • Aguado, M.A., Anderson, M.A., (1993) Solar Energy Mater. Solar Cells, 28, pp. 345-361
  • Salvador, P., (1985) J. Phys. Chem., 89, pp. 3863-3869
  • Kormann, C., Bahnemann, D.W., Hoffmann, M.R., (1991) Environ. Sci. Technol., 25, pp. 494-500
  • Kikkawa, H., O'Regan, B., Anderson, M.A., (1991) J. Electroanal. Chem., 309, pp. 91-101
  • Wahl, A., Ulmann, M., Carroy, A., Jermann, B., Dolata, M., Kedzierzawski, P., Chatelain, C., Augustynski, J., (1995) J. Electroanal. Chem., 396, pp. 41-51
  • Wahl, A., Augustynski, J., (1998) J. Phys. Chem. B, 102, pp. 7820-7828
  • Shiga, A., Tsujiko, A., Ide, T., Yae, S., Nakato, Y., (1998) J. Phys. Chem. B, 102, pp. 6049-6055
  • Finklea, H.O., (1988), pp. 70-74. , Semiconductor Electrodes; Finklea, H. O., Ed.; Elsevier: New York; Mandelbaum, P.A., Regazzoni, A.E., Blesa, M.A., Bilmes, S.A., (1997), pp. 88-96. , Proceedings of the Symposium on Photoelectrochemistry, Vol. 97-20; Rajeshwar, K., Peter, L. M., Fujishima, A., Meissner, D., Tomkiewich, M., Eds.; Electrochemical Society: Pennington, NJ; Wang, J., (1981) Electrochim. Acta, 26, pp. 1721-1726
  • Podlaha, E.J., Fenton, J.M., (1995) J. Appl. Electrochem., 25 (4), pp. 299-306
  • Sawyer, D.T., Sobkowiak, A., Roberts J.L., Jr., (1995), pp. 358-403. , Electrochemistry for Chemist; Wiley-Interscience: New York; Fujishima, A., Honda, K., (1971) Bull. Chem. Soc. Jpn., 44, pp. 1148-1150
  • Maeda, Y., Fujishima, A., Honda, K., (1981) J. Electrochim. Acta, 128, pp. 1-42
  • Finklea, H.O., (1988), p. 38. , Semiconductor Electrodes; Finklea, H.O., Ed.; Elsevier: New York; Hidaka, H., Nagaoka, H., Nohara, K., Shimura, T., Horikoshi, S., Zhao, J., Serpone, N., (1996) J. Photochem. Photobiol. A: Chem., 98, pp. 73-78
  • Pelizzetti, E., Minero, C., (1993) Electrochim. Acta, 38 (1), pp. 47-55

Citas:

---------- APA ----------
Candal, R.J., Zeltner, W.A. & Anderson, M.A. (2000) . Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor. Environmental Science and Technology, 34(16), 3443-3451.
http://dx.doi.org/10.1021/es991024c
---------- CHICAGO ----------
Candal, R.J., Zeltner, W.A., Anderson, M.A. "Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor" . Environmental Science and Technology 34, no. 16 (2000) : 3443-3451.
http://dx.doi.org/10.1021/es991024c
---------- MLA ----------
Candal, R.J., Zeltner, W.A., Anderson, M.A. "Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor" . Environmental Science and Technology, vol. 34, no. 16, 2000, pp. 3443-3451.
http://dx.doi.org/10.1021/es991024c
---------- VANCOUVER ----------
Candal, R.J., Zeltner, W.A., Anderson, M.A. Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor. Environ. Sci. Technol. 2000;34(16):3443-3451.
http://dx.doi.org/10.1021/es991024c