Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Fitness-related traits are often affected by temperature. Heat-resistant genotypes could influence the dependence of fitness traits on temperature, which should be important in adaptation to directional changes in temperature including global warming. Here, we tested temperature-dependent variation in longevity and fecundity between Drosophila melanogaster Meigen (Diptera: Drosophilidae) genotypes that differ in heat-resistance QTL. Longevity and fecundity were affected by heat-resistance genotypes at constant moderate and high temperature. However, these differences between heat-resistant and heat-sensitive genotypes disappeared in a cyclic thermal regime. Analysis with the logistic mortality function indicated that mortality patterns are dependent on temperature and genotype. The results suggest that genotype*temperature interactions are substantial for senescence-related traits. In particular, fluctuating temperatures can drastically reduce any differences in life-history traits between heat-resistance genotypes, even if such genotypes differentially affect the traits at constant temperatures. © 2017 The Netherlands Entomological Society

Registro:

Documento: Artículo
Título:Thermal-specific patterns of longevity and fecundity in a set of heat-sensitive and heat-resistant genotypes of Drosophila melanogaster
Autor:Stazione, L.; Norry, F.M.; Sambucetti, P.
Filiación:Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires – IEGEBA (CONICET-UBA), (C-1428-EHA), Buenos Aires, Argentina
Palabras clave:antagonistic pleiotropy; cyclic thermal regimen; Diptera; Drosophilidae; heat sensitivity; Quantitative Trait Loci; senescence; adaptation; fecundity; fitness; fly; genetic marker; genotype; global warming; high temperature; life history trait; longevity; mortality; pleiotropy; senescence; temperature effect; thermal regime; Diptera; Drosophila melanogaster; Drosophilidae
Año:2017
Volumen:165
Número:2-3
Página de inicio:159
Página de fin:168
DOI: http://dx.doi.org/10.1111/eea.12630
Título revista:Entomologia Experimentalis et Applicata
Título revista abreviado:Entomol. Exp. Appl.
ISSN:00138703
CODEN:ETEAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00138703_v165_n2-3_p159_Stazione

Referencias:

  • Arias, L.N., Sambucetti, P., Scannapieco, A.C., Loeschcke, V., Norry, F.M., Survival to heat stress with and without heat-hardening in Drosophila melanogaster: interactions with larval density (2012) Journal of Experimental Biology, 215, pp. 2220-2225
  • Bates, D., Maechler, M., Bolker, B., Walker, S., (2013) lme4: Linear mixed-effects models using Eigen and S4. R package v.1.0-5, , http://CRAN.R-project.org/package=lme4, &, (accessed 15 March 2016)
  • Bowler, K., Terblanche, J.S., Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? (2008) Biological Reviews, 83, pp. 339-355
  • Bozinovic, F., Bastias, D.A., Boher, F., Clavijo-Baquet, S., Estay, S.A., Angilletta, M.J., The mean and variance of environmental temperature interact to determine physiological tolerance and fitness (2011) Physiological and Biochemical Zoology, 84, pp. 543-552
  • Defays, R., Gomez, F.H., Sambucetti, P., Scannapieco, A.C., Loeschcke, V., Norry, F.M., Quantitative trait loci for longevity in heat-stressed Drosophila melanogaster (2011) Experimental Gerontology, 46, pp. 819-826
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., (2014) InfoStat v.2014, , http://www.infostat.com.ar, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Córdoba, Argentina, (accessed 15 March 2016)
  • Flatt, T., Survival costs of reproduction in Drosophila (2011) Experimental Gerontology, 46, pp. 369-375
  • Gomez, F.H., Bertoli, C.I., Sambucetti, P., Scannapieco, A.C., Norry, F.M., Heat-induced hormesis in longevity as correlated response to thermal-stress selection in Drosophila buzzatii (2009) Journal of Thermal Biology, 34, pp. 17-22
  • Highfill, C.A., Reeves, G.A., Macdonald, S.J., Genetic analysis of variation in lifespan using a multiparental advanced intercross Drosophila mapping population (2016) BMC Genetics, 17, p. 113
  • Hoffmann, A.A., Sørensen, J.G., Loeschcke, V., Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches (2003) Journal of Thermal Biology, 28, pp. 175-216
  • Huey, R.B., Wakefield, T., Crill, W.C., Gilchrist, G.W., Within and between generation effects of temperature on early fecundity of Drosophila melanogaster (1995) Heredity, 74, pp. 216-223
  • Kellermann, V., van Heerwaarden, B., Sgrò, C.M., Hoffmann, A.A., Fundamental evolutionary limits in ecological traits drive Drosophila species distributions (2009) Science, 325, pp. 1244-1246
  • Kellermann, V., Overgaarda, J., Hoffmann, A.A., Fløjgaarda, C., Svenninga, J.-C., Loeschcke, V., Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically (2012) Proceedings of the National Academy of Sciences of the USA, 109, pp. 16228-16233
  • Kengeri, S.S., Maras, A.H., Suckow, C.L., Chiang, E.C., Waters, D.J., Exceptional longevity in female rottweiler dogs is not encumbered by investment in reproduction (2013) Age, 35, pp. 2503-2513
  • Khazaeli, A.A., Curtsinger, J.W., Pleiotropy and life history evolution in Drosophila melanogaster: uncoupling life span and early fecundity (2013) Journal of Gerontology Series A, 68, pp. 546-553
  • Klepsatel, P., Gáliková, M., De Maio, N., Huber, C.D., Schlötterer, C., Flatt, T., Variation in thermal performance and reaction norms among populations of Drosophila melanogaster (2013) Evolution, 67, pp. 3573-3587
  • Le Bourg, E., Does reproduction decrease longevity in human beings? (2007) Ageing Research Review, 6, pp. 141-149
  • Loeschcke, V., Kristensen, T.N., Norry, F.M., Consistent effects of a major QTL for thermal resistance in field-released Drosophila melanogaster (2011) Journal of Insect Physiology, 57, pp. 1227-1231
  • Luckinbill, L.S., Arking, R., Clare, M.J., Cirocco, W.C., Buck, S.A., Selection for delayed senescence in Drosophila melanogaster (1984) Evolution, 38, pp. 996-1003
  • Manenti, T., Sørensen, J.G., Moghadam, N.N., Loeschcke, V., Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes (2016) Heredity, 117, pp. 149-154
  • Morgan, T.J., Mackay, T.F.C., Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster (2006) Heredity, 96, pp. 232-242
  • Norry, F.M., Loeschcke, V., Temperature-induced shifts in associations of longevity with body size in Drosophila melanogaster (2002) Evolution, 56, pp. 299-306
  • Norry, F.M., Loeschcke, V., Heat-induced expression of a molecular chaperone decreases by selecting for long-lived individuals (2003) Experimental Gerontology, 38, pp. 673-681
  • Norry, F.M., Dahlgaard, J., Loeschcke, V., Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster (2004) Molecular Ecology, 13, pp. 3585-3594
  • Norry, F.M., Gomez, F.H., Loeschcke, V., Knockdown resistance to heat stress and slow recovery from chill coma are genetically associated in a central region of chromosome 2 in Drosophila melanogaster (2007) Molecular Ecology, 16, pp. 3274-3284
  • Norry, F.M., Sambucetti, P., Scannapieco, A.C., Gomez, F.H., Loeschcke, V., X-linked QTL for knockdown resistance to high temperature in Drosophila melanogaster (2007) Insect Molecular Biology, 16, pp. 509-513
  • Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I., Loeschcke, V., Quantitative trait loci for heat-hardening acclimation, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster (2008) Molecular Ecology, 17, pp. 4570-4581
  • Norry, F.M., Larsen, P.F., Liu, Y., Loeschcke, V., Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster (2009) Journal of Insect Physiology, 55, pp. 1050-1057
  • Paaby, A.B., Schmidt, P.S., Dissecting the genetics of longevity in Drosophila melanogaster (2009) Fly, 3, pp. 29-38
  • Partridge, L., Gems, D., Withers, D.J., Sex and death: what is the connection? (2005) Cell, 120, pp. 461-472
  • Pletcher, S.D., Model fitting and hypothesis testing for age-specific mortality data (1999) Journal of Experimental Biology, 12, pp. 430-439
  • (2015) R: A Language and Environment for Statistical Computing, , R Foundation for Statistical Computing, Vienna, Austria
  • Rand, D.M., Weinreich, D.M., Lerman, D., Folk, D., Gilchrist, G.W., Three selections are better than one: clinical variation of thermal QTL from independent selection experiments in Drosophila (2010) Evolution, 64, pp. 2921-2934
  • Rice, W.R., Analyzing tables of statistical tests (1989) Evolution, 43, pp. 223-225
  • Rodriguez, M., Snoek, L.B., Riksen, J.A.G., Bevers, R.P., Kammenga, J.E., Genetic variation for stress-response hormesis in C. elegans lifespan (2012) Experimental Gerontology, 47, pp. 581-587
  • Rose, M.R., Laboratory evolution of postponed senescence in Drosophila melanogaster (1984) Evolution, 38, pp. 1004-1010
  • Rose, M.R., Genetics of aging in Drosophila (1999) Experimental Gerontology, 34, pp. 577-585
  • Rose, M.R., Charlesworth, B., A test of evolutionary theories of senescence (1980) Nature, 287, pp. 141-142
  • Sambucetti, P., Norry, F.M., Mating success at high temperature in highland- and lowland-derived populations as well as in heat knock-down selected Drosophila buzzatii (2015) Entomologia Experimentalis et Applicata, 154, pp. 206-212
  • Sambucetti, P., Sørensen, J.G., Loeschcke, V., Norry, F.M., Variation in senescence and associated traits between sympatric cactophilic sibling species of Drosophila (2005) Evolutionary Ecology Research, 7, pp. 915-930
  • Sambucetti, P., Scannapieco, A.C., Loeschcke, V., Norry, F.M., Heat-stress survival in the pre-adult stage of the life cycle in an intercontinental set of recombinant inbred lines of Drosophila melanogaster (2013) Journal of Experimental Biology, 216, pp. 2953-2959
  • Sambucetti, P., Loeschcke, V., Norry, F.M., Patterns of longevity and fecundity at two temperatures in a set of heat-selected recombinant inbred lines of Drosophila melanogaster (2015) Biogerontology, 16, pp. 801-810
  • Scannapieco, A.C., Sambucetti, P., Norry, F.M., Direct and correlated responses to selection for longevity in Drosophila buzzatii (2009) Biological Journal of the Linnean Society of London, 97, pp. 738-748
  • Sgrò, C.M., Hoffmann, A.A., Genetic correlations, tradeoffs and environmental variation (2004) Heredity, 93, pp. 241-248
  • Tarin, J.J., Gómez-Piquer, V., García-Palomares, S., García-Pérez, M.A., Cano, A., Absence of long-term effects of reproduction on longevity in the mouse model (2014) Reproductive Biology and Endocrinology, 12, p. 84
  • Vanin, S., Bhutani, S., Montelli, S., Menegazzi, P., Green, E.W., Unexpected features of Drosophila circadian behavioural rhythms under natural conditions (2012) Nature, 484, pp. 371-375
  • Vieira, C., Pasyukova, E.G., Zeng, Z.B., Hackett, J.B., Lyman, R.F., Mackay, T.F.C., Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster (2000) Genetics, 154, pp. 213-227
  • Wang, M.H., Lazebny, O., Harshman, L.G., Nuzhdin, S.V., Environment-dependent survival of Drosophila melanogaster: a quantitative genetic analysis (2004) Aging Cell, 3, pp. 133-140
  • Williams, G.C., Natural selection, the costs of reproduction and a refinement of Lack's principle (1966) American Naturalist, 100, pp. 687-690
  • Wit, J., Sarup, P., Lupsa, N., Malte, H., Frydenberg, J., Loeschcke, V., Longevity for free? Increased reproduction with limited trade-offs in Drosophila melanogaster selected for increased life span (2013) Experimental Gerontology, 48, pp. 349-357
  • Zwaan, B., Bijlsma, R., Hoekstra, R.F., Direct selection on life span in Drosophila melanogaster (1995) Evolution, 49, pp. 649-659

Citas:

---------- APA ----------
Stazione, L., Norry, F.M. & Sambucetti, P. (2017) . Thermal-specific patterns of longevity and fecundity in a set of heat-sensitive and heat-resistant genotypes of Drosophila melanogaster. Entomologia Experimentalis et Applicata, 165(2-3), 159-168.
http://dx.doi.org/10.1111/eea.12630
---------- CHICAGO ----------
Stazione, L., Norry, F.M., Sambucetti, P. "Thermal-specific patterns of longevity and fecundity in a set of heat-sensitive and heat-resistant genotypes of Drosophila melanogaster" . Entomologia Experimentalis et Applicata 165, no. 2-3 (2017) : 159-168.
http://dx.doi.org/10.1111/eea.12630
---------- MLA ----------
Stazione, L., Norry, F.M., Sambucetti, P. "Thermal-specific patterns of longevity and fecundity in a set of heat-sensitive and heat-resistant genotypes of Drosophila melanogaster" . Entomologia Experimentalis et Applicata, vol. 165, no. 2-3, 2017, pp. 159-168.
http://dx.doi.org/10.1111/eea.12630
---------- VANCOUVER ----------
Stazione, L., Norry, F.M., Sambucetti, P. Thermal-specific patterns of longevity and fecundity in a set of heat-sensitive and heat-resistant genotypes of Drosophila melanogaster. Entomol. Exp. Appl. 2017;165(2-3):159-168.
http://dx.doi.org/10.1111/eea.12630