Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

TGF-β isoforms are expressed in the anterior pituitary and modulate the growth and function of endocrine pituitary cells. Recently, TGF-β has been shown to stimulate growth and basic fibroblast growth factor secretion in nonendocrine folliculostellate (FS) pituitary cells. We therefore studied whether the production of FS cell-derived vascular endothelial growth factor (VEGF), the most important regulator of vascular permeability and angiogenesis, is affected by TGF-β. We observed by RT-PCR that TtT/GF cells, which are FS mouse pituitary tumor cells, synthesize TGF-β1, -β2, and -β3. They also express TGF-β receptors types 1 and 2, as well as Smad2, Smad3, and Smad4 proteins, which are essential for TGF-β binding and signaling. Stimulation of TtT/GF cells with either TGF-β1 or TGF-β3 induced a rapid translocation of Smad2 into the cell nuclei. Both TGF-β isoforms dose dependently stimulated VEGF production in TtT/GF cells, but not in lactosomatotroph GH3 cells. Time-course studies and suppression of TGF-β-induced VEGF production by cycloheximide suggest that TGF-β induces de novo synthesis of VEGF in folliculostellate cells, which is completely blocked by dexamethasone. In primary rat pituitary cell cultures, TGF-β and -β3 stimulated VEGF production. TGF-β stimulation of VEGF production by folliculostellate cells could modulate intrapituitary vascular permeability and integrity as well as angiogenesis in an auto-/paracrine manner.

Registro:

Documento: Artículo
Título:Transforming growth factor-β stimulates vascular endothelial growth factor production by folliculostellate pituitary cells
Autor:Renner, U.; Lohrer, P.; Schaaf, L.; Feirer, M.; Schmitt, K.; Onofri, C.; Arzt, E.; Stalla, G.K.
Filiación:Max-Planck-Institute of Psychiatry, Munich D-80804, Germany
Department of Endocrinology, Munich D-80804, Germany
Laboratorio de Fisiologia y Biologia Molecular, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
Department de Biologia, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
Max Planck Institute of Psychiatry, Department of Endocrinology, Kraepelinstrasse 10, D-80804 Munich, Germany
Palabras clave:cycloheximide; dexamethasone; messenger RNA; Smad2 protein; Smad3 protein; Smad4 protein; transforming growth factor beta receptor; transforming growth factor beta1; transforming growth factor beta2; transforming growth factor beta3; vasculotropin; angiogenesis; animal cell; article; blood vessel permeability; cell nucleus; controlled study; hypophysis cell; hypophysis tumor; mouse; nonhuman; priority journal; protein analysis; protein expression; protein transport; rat; reverse transcription polymerase chain reaction; Animals; Biological Transport; Cell Nucleus; Cells, Cultured; Dexamethasone; DNA-Binding Proteins; Endothelial Growth Factors; Glucocorticoids; Lymphokines; Male; Mice; Pituitary Gland; Pituitary Gland, Anterior; Protein Isoforms; Rats; Rats, Sprague-Dawley; Receptors, Transforming Growth Factor beta; RNA, Messenger; Smad2 Protein; Trans-Activators; Transforming Growth Factor beta; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factors
Año:2002
Volumen:143
Número:10
Página de inicio:3759
Página de fin:3765
DOI: http://dx.doi.org/10.1210/en.2002-220283
Título revista:Endocrinology
Título revista abreviado:Endocrinology
ISSN:00137227
CODEN:ENDOA
CAS:Dexamethasone, 50-02-2; DNA-Binding Proteins; Endothelial Growth Factors; Glucocorticoids; Lymphokines; Madh2 protein, rat; Protein Isoforms; Receptors, Transforming Growth Factor beta; RNA, Messenger; Smad2 Protein; Smad2 protein, mouse; Trans-Activators; Transforming Growth Factor beta; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factors
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00137227_v143_n10_p3759_Renner

Referencias:

  • Massague, J., Blain, S.W., Lo, R.S., TGFβ signaling in growth control, cancer, and heritable disorders (2000) Cell, 103, pp. 295-309
  • Massague, J., The TGF-β family (1990) Annu Rev Cell Biol, 6, pp. 597-641
  • Moustakas, A., Souchelnytskyi, S., Heldin, C.-H., Smad regulation in TGF-β signal transduction (2001) J Cell Sci, 114, pp. 4359-4369
  • Heldin, C.H., Miyazono, K., Ten Dijke, P., TGF-β signaling from cell membrane to nucleus through SMAD proteins (1997) Nature, 390, pp. 465-471
  • Keramidas, M., Bourgarit, J.-J., Tabone, E., Corticelli, P., Chambaz, E.M., Feige, J.-J., Immunolocalization of transforming growth factor-β1 in the bovine adrenal cortex using antipeptide antibodies (1991) Endocrinology, 129, pp. 517-526
  • De, A., Morgan, T.E., Speth, R.C., Boyadjieva, N., Sarkar, D.K., Pituitary lactotrope express transforming growth factor β (TGFβ) type II receptor mRNA and protein and contains 125I-TGFβ1 binding sites (1996) J Endocrinol, 149, pp. 19-27
  • Hentges, S., De, A., Pastorcic, M., Boyadjieva, N., Sarkar, D.K., Opposing actions of two TGF-β isoforms on pituitary lactotropic cell proliferation (2000) Endocrinology, 141, pp. 1528-1535
  • Jin, L., Tsumanuma, I., Ruebel, K.H., Bayliss, J.M., Lloyd, R.V., Analysis of homogeneous populations of anterior pituitary folliculostellate cells by laser capture microdissection and reverse transcription-polymerase chain reaction (2001) Endocrinology, 142, pp. 170-1709
  • Abraham, E.J., Faught, W.J., Frawley, L.S., Transforming growth factor β1 is a paracrine inhibitor of prolactin gene expression (1998) Endocrinology, 139, pp. 5174-5181
  • Coya, R., Alvarez, C.V., Perez, F., Gianzo, C., Dieguez, C., Effects of TGF-β1 on prolactin synthesis and secretion: An in-vitro study (1999) J Neuroendocrinol, 11, pp. 351-360
  • De, A., Hentges, S., Boyadjieva, N., Sarkar, D.K., Effect of antisense suppression of transforming growth factor-β3 gene on lactotropic cell proliferation (2001) J Neuroendocrinol, 13, pp. 324-327
  • Hentges, S., Boyadjieva, N., Sarkar, D.K., Transforming growth factor-β3 stimulates lactotrope cell growth by increasing basic fibroblast growth factor from folliculo-stellate cells (2000) Endocrinology, 141, pp. 859-867
  • Chuang, C.-C., Tan, S.-K., Tai, L.-K., Hsin, J.-P., Wang, F.-F., Evidence for the involvement of protein kinase C in the inhibition of prolactin gene expression by transforming growth factor-β2 (1998) Mol Pharmacol, 53, pp. 1054-1061
  • Pastorcic, M., De, A., Boyadjieva, N., Vale, W., Sarkar, D.K., Reduction in the expression and action of transforming growth factor-β1 on lactotrophs during estrogen-induced tumorigenesis (1995) Cancer Res, 55, pp. 4892-4898
  • Hentges, S., Sarkar, D.K., Transforming growth factor-β regulation of estradiol-induced prolactinomas (2001) Front Neuroendocrinol, 22, pp. 340-363
  • Ferrara, N., Henzel, W.J., Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells (1989) Biochem Biophys Res Commun, 161, pp. 851-858
  • Lohrer, P., Gloddek, J., Hopfner, U., Losa, M., Uhl, C., Pagotto, U., Stalla, G.K., Renner, U., Vascular endothelial growth factor production and regulation in rodent and human pituitary tumor cells in vitro (2001) Neuroendocrinology, 74, pp. 95-105
  • Ferrara, N., Davis-Smyth, T., The biology of vascular endothelial growth factor (1997) Endocr Rev, 18, pp. 4-25
  • Inoue, K., Couch, E.F., Takano, K., Ogawa, S., The structure and function of folliculo-stellate cells in the anterior pituitary gland (1999) Arch Histol Cytol, 62, pp. 205-218
  • Gloddek, J., Pagotto, U., Paez Pereda, M., Arzt, E., Stalla, G.K., Renner, U., Pituitary adenylate cyclase-activating polypeptide, interleukin-6 and glucocorticoids regulate the release of vascular endothelial growth factor in pituitary folliculostellate cells (1999) J Endocrinol, 160, pp. 483-490
  • Inoue, K., Matsumoto, H., Koyama, C., Shibata, K., Nakazato, Y., Ito, A., Establishment of a folliculostellate-like cell line from a murine thyrotropic pituitary tumor (1992) Endocrinology, 131, pp. 3110-3116
  • Delidow, B.C., Billis, W.M., Agarwal, P., White, B.A., Inhibition of prolactin gene transcription by TGFβ in GH3 cells (1991) Mol Endocrinol, 5, pp. 1716-1722
  • Renner, U., Newton, C.J., Pagotto, U., Sauer, J., Arzt, E., Stalla, G.K., Involvement of interleukin-1 and interleukin-1 receptor antagonist in rat pituitary cell growth regulation (1995) Endocrinology, 136, pp. 3186-3193
  • Renner, U., Gloddek, J., Arzt, E., Inoue, K., Stalla, G.K., Interleukin-6 is an autocrine growth factor for folliculostellate-like TtT/GF mouse pituitary tumor cells (1997) Exp Clin Endocrinol Diabetes, 105, pp. 345-352
  • Chomczynski, P., Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction (1987) Anal Biochem, 162, pp. 156-159
  • Machida, H., Ogawa, K., Funaba, M., Mizutani, T., Tsujimoto, M., mRNA expression of type I and type II receptors for activin, transforming growth factor-β, and bone morphogenetic protein in the murine erythroleukemic cell line F5-5. fl (2000) Eur J Endocrinol, 143, pp. 705-710
  • Lohrer, P., Gloddek, J., Carbia Nagashima, A., Korali, Z., Hopfner, U., Paez Pereda, M., Arzt, E., Renner, U., Lipopolysaccharide directly stimulates the intrapituitary interleukin-6 production by folliculostellate cells via specific receptors and the p38a mitogen-activated protein kinase/nuclear factor-κB pathway (2000) Endocrinology, 141, pp. 4457-4465
  • Schreiber, E., Matthias, P., Müller, M.M., Schaffner, W., Rapid detection of octamer binding proteins with mini extracts, prepared from a small number of cells (1989) Nucleic Acids Res, 17, p. 6419
  • Ray, D., Melmed, S., Pituitary cytokine and growth factor expression and action (1997) Endocr Rev, 18, pp. 206-228
  • Arzt, E., Paez Pereda, M., Perez Castro, C., Pagotto, U., Renner, U., Stalla, G.K., Pathophysiological role of the cytokine network in the anterior pituitary gland (1999) Front Neuroendocrinol, 20, pp. 71-95
  • Carmeliet, P., Mechanisms of angiogenesis and arteriogenesis (2000) Nat Med, 6, pp. 389-395
  • Roberts, W.G., Palade, G., Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor (1995) J Cell Sci, 108, pp. 2369-2379
  • Matsuda, T., Yamamoto, T., Muraguchi, A., Saatcioglu, F., Cross-talk between transforming growth factor-β and estrogen receptor signaling through Smad3 (2001) J Biol Chem, 276, pp. 42908-42914
  • Asa, S.L., Ezzat, S., The cytogenesis and pathogenesis of pituitary adenomas (1998) Endocr Rev, 19, pp. 798-827
  • Elias, K.A., Weiner, R.I., Direct arterial vascularization of estrogen-induced prolactin-secreting anterior pituitary tumors (1984) Proc Natl Acad Sci USA, 81, pp. 4549-4553
  • Banerjee, S.K., Sarkar, D.K., Weston, A.P., De, A., Campbell, D.R., Over expression of vascular endothelial growth factor and its receptor during the development of estrogen-induced rat pituitary tumors may mediate estrogen-initiated tumor angiogenesis (1997) Carcinogenesis, 18, pp. 1155-1161
  • Heaney, A.P., Horwitz, G.A., Wang, Z., Singson, R., Melmed, S., Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis (1999) Nat Med, 5, pp. 1317-1321
  • Banerjee, S.K., Zoubine, M.N., Tran, T.M., Weston, A.P., Campbell, D.R., Over-expression of vascular endothelial growth factor164 and its co-receptor neuropilin-1 in estrogen-induced rat pituitary tumors and GH3 rat pituitary tumor cells (2000) Int J Oncol, 16, pp. 253-260
  • Ochoa, A.L., Mitchner, N.A., Paynter, C.D., Morris, R.E., Ben-Jonathan, N., Vascular endothelial growth factor in the rat pituitary: Differential distribution and regulation by estrogen (2000) J Endocrinol, 165, pp. 483-492
  • Banerjee, S.K., Zoubine, M.N., Sarkar, D.K., Weston, A.P., Shah, J.H., Campbell, D.R., 2-Methoxyestradiol blocks estrogen-induced rat pituitary tumor growth and tumor angiogenesis: Possible role of vascular endothelial growth factor (2000) Anticancer Res, 20, pp. 2641-2646

Citas:

---------- APA ----------
Renner, U., Lohrer, P., Schaaf, L., Feirer, M., Schmitt, K., Onofri, C., Arzt, E.,..., Stalla, G.K. (2002) . Transforming growth factor-β stimulates vascular endothelial growth factor production by folliculostellate pituitary cells. Endocrinology, 143(10), 3759-3765.
http://dx.doi.org/10.1210/en.2002-220283
---------- CHICAGO ----------
Renner, U., Lohrer, P., Schaaf, L., Feirer, M., Schmitt, K., Onofri, C., et al. "Transforming growth factor-β stimulates vascular endothelial growth factor production by folliculostellate pituitary cells" . Endocrinology 143, no. 10 (2002) : 3759-3765.
http://dx.doi.org/10.1210/en.2002-220283
---------- MLA ----------
Renner, U., Lohrer, P., Schaaf, L., Feirer, M., Schmitt, K., Onofri, C., et al. "Transforming growth factor-β stimulates vascular endothelial growth factor production by folliculostellate pituitary cells" . Endocrinology, vol. 143, no. 10, 2002, pp. 3759-3765.
http://dx.doi.org/10.1210/en.2002-220283
---------- VANCOUVER ----------
Renner, U., Lohrer, P., Schaaf, L., Feirer, M., Schmitt, K., Onofri, C., et al. Transforming growth factor-β stimulates vascular endothelial growth factor production by folliculostellate pituitary cells. Endocrinology. 2002;143(10):3759-3765.
http://dx.doi.org/10.1210/en.2002-220283