Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The extreme cathodic and anodic pH fronts induced in the electrochemical treatment of tumors (EChT) are the main cause of tumor necrosis. Here, we study pH fronts interaction in a tissue under EChT through in vitro and in silico modeling. The in vitro model considers the tumor tissue as a buffered gel with saline (NaCl) content and the cathodic treated area as the area of phenolphtalein virage. The in silico model solves the 1D Nernst-Planck equations for ion transport in a four-ion electrolyte. In silico modeling predicts an initial neutral pH profile evolving into extreme cathodic alkaline and anodic acidic fronts moving towards each other and colliding, thus excluding the existence of a biological pH region between them. Moreover, the model predicts that as electric current increases, pH front scaling grows as t1, unveiling a transition from a diffusion to a migration governed regime. Theory and simulations have a strong correlation with experimental measurements. Since necrotic areas correlate well with those covered by alkaline and acid fronts advance, pH front tracking can be used to predict the extent of tumor destruction and thus, the assessment of EChT effectiveness. © 2009 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:pH front tracking in the electrochemical treatment (EChT) of tumors: Experiments and simulations
Autor:Turjanski, P.; Olaiz, N.; Abou-Adal, P.; Suárez, C.; Risk, M.; Marshall, G.
Filiación:Laboratorio de Sistemas Complejos, Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon I, Buenos Aires 1428, Argentina
Palabras clave:Electroacupuncture; Electrochemical treatment; Mathematical modeling; Numerical simulation; Tumor; Electrochemical treatment; Electrochemical treatments; Experimental measurements; Front tracking; In-silico; In-silico models; In-vitro; Ion transports; Mathematical modeling; Nernst-Planck equations; Neutral pH; Numerical simulation; Strong correlation; Tumor necrosis; Tumor tissues; Computer simulation languages; Electroacupuncture; Gelation; Oncology; Sodium chloride; Tumors; Simulators
Año:2009
Volumen:54
Número:26
Página de inicio:6199
Página de fin:6206
DOI: http://dx.doi.org/10.1016/j.electacta.2009.05.062
Título revista:Electrochimica Acta
Título revista abreviado:Electrochim Acta
ISSN:00134686
CODEN:ELCAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134686_v54_n26_p6199_Turjanski

Referencias:

  • Nilsson, E., von Euler, H., Berendson, J., Thörne, A., Wersäll, P., Näslund, I., Lagerstedt, A., Olsson, J., (2000) Bioelectrochemistry, 51, p. 1
  • Nordenström, B., (1983) Biologically Closed Electrical Circuits: Clinical, Experimental and Theoretical Evidence for an Additional Circulatory System, , Nordic Medical Publications, Stockholm, Sweeden
  • Nordenström, B., (1989) Am. J. Clin. Oncol.: Cancer Clinical Trials, 12, p. 530
  • Xin, Y., (1994) Eur. J. Surg. Suppl., 574, p. 25
  • Xin, Y., Liu, D., Meng, X., (2001) Zhongguo Zhong Xi Yi Jie He Za Zhi, 21, p. 174
  • Miklavčič, D., Serša, G., Novakovič, S., Rebersek, S., (1990) J. Bioelectr., 9, p. 133
  • Miklavčič, D., Serša, G., Kryžanowski, M., Novakovič, S., Bobanovič, F., Golouh, R., Vodovnik, L., (1993) Bioelectrochem. Bioenergy, 30, p. 209
  • Serša, G., Miklavčič, D., (1993) Regional Cancer Treat., 6, p. 31
  • Miklavčič, D., Fajgelj, A., Serša, G., (1994) Bioelectrochem. Bioenergy, 35, p. 93
  • von Euler, H., Stråhle, K., Thörne, A., Yongqing, G., (2004) Bioelectrochemistry, 62, p. 57
  • Berendson, J., Simonsson, D., (1994) Eur. J. Surg. Suppl., 574, p. 111
  • Vijh, A., (2004) Int. J. Hydrogen Energy, 29, p. 663
  • Nilsson, E., Berendson, J., Fontes, E., (2000) J. Appl. Electrochem., 30, p. 1321
  • Finch, J., Fosh, B., Anthony, A., Slimani, E., Texler, M., Berry, D., Dennison, A., Maddern, G., (2002) Clin. Sci. (Lond.), 102, p. 389
  • Preziosi, L., (2003) Cancer Modelling and Simulation, , Chapman & Hall/CRC, London, UK
  • Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P., (2006) Philos. Trans. A Math Phys. Eng. Sci., 364, p. 1563
  • Nilsson, E., Berendson, J., Fontes, E., (1998) Bioelectrochem. Bioenergy, 47, p. 11
  • Nilsson, E., Berendson, J., Fontes, E., (1999) J. Electroanal. Chem., 460, p. 88
  • Nilsson, E., Fontes, E., (2001) Bioelectrochemisty, 53, p. 213
  • Cabrales, L., Ciria, H., Bruzón, R., Aldana, R., González, L., (2000) Revista Brasileira de Cancerologia, 46, p. 265
  • Telló, M., Dias, G., Sonalio, F., Oliveira, L., Oliveira, R., (2004) URSI EMTS, p. 519
  • Cabrales, L., Aguilera, A., Jiménez, R., Jarque, M., Ciria, H., Reyes, J., Mateus, M., Ávila, M., (2008) Math. Comput. Simulat., 78, p. 112
  • Colombo, L., González, G., Marshall, G., Molina, F., Soba, A., Suárez, C., Turjanski, P., (2007) Bioelectrochemistry, 71, p. 223
  • W. Rasband, NIH ImageJ, an image processing and analysis package (http://rsb.info.nih.gov/ij/) (1997-2005); West, J., (1985) Physiological Basis of Medical Practice. 11th edition, , Lippincott, William & Wilkins, Baltimore
  • Newman, J., Thomas-Alyea, K., (2004) Electrochemical Systems. 3rd edition, , John Wiley & Sons, Inc., Hoboken, New Jersey
  • Odake, S., Hatae, K., Shimada, A., Iibuchi, S., (1990) Agric. Biol. Chem., 54, p. 2811
  • Marshall, G., (1986) Solución Numérica de Ecuaciones Diferenciales. Tomo II: Ecuaciones en Derivadas Parciales, , Editorial Reverté S.A., Buenos Aires
  • Britz, D., (2005) Digital Simulation in Electrochemistry, 3rd edition, vol. 666 of Lecture Notes in Physics, , Springer-Verlag, Berlin
  • Bland, J., Altman, D., (1986) Lancet, 1, p. 307
  • Bland, J., Altman, D., (1999) Stat. Methods Med. Res., 8, p. 135
  • Damjanovic, A., Birss, V., Boudreaux, D., (1991) J. Electrochem. Soc., 138, p. 2549
  • Bard, A., (1973) Encyclopedia of Electrochemistry of the Elements, , Marcel Dekker, New York
  • Tilak, B., Chen, C., (1993) J. Appl. Electrochem., 23, p. 631
  • Moore, W., (1983) Basic Physical Chemistry, , Prentice-Hall Int. Ed., London

Citas:

---------- APA ----------
Turjanski, P., Olaiz, N., Abou-Adal, P., Suárez, C., Risk, M. & Marshall, G. (2009) . pH front tracking in the electrochemical treatment (EChT) of tumors: Experiments and simulations. Electrochimica Acta, 54(26), 6199-6206.
http://dx.doi.org/10.1016/j.electacta.2009.05.062
---------- CHICAGO ----------
Turjanski, P., Olaiz, N., Abou-Adal, P., Suárez, C., Risk, M., Marshall, G. "pH front tracking in the electrochemical treatment (EChT) of tumors: Experiments and simulations" . Electrochimica Acta 54, no. 26 (2009) : 6199-6206.
http://dx.doi.org/10.1016/j.electacta.2009.05.062
---------- MLA ----------
Turjanski, P., Olaiz, N., Abou-Adal, P., Suárez, C., Risk, M., Marshall, G. "pH front tracking in the electrochemical treatment (EChT) of tumors: Experiments and simulations" . Electrochimica Acta, vol. 54, no. 26, 2009, pp. 6199-6206.
http://dx.doi.org/10.1016/j.electacta.2009.05.062
---------- VANCOUVER ----------
Turjanski, P., Olaiz, N., Abou-Adal, P., Suárez, C., Risk, M., Marshall, G. pH front tracking in the electrochemical treatment (EChT) of tumors: Experiments and simulations. Electrochim Acta. 2009;54(26):6199-6206.
http://dx.doi.org/10.1016/j.electacta.2009.05.062