Artículo

Díaz-Duran, A.K.; Montiel, G.; Viva, F.A.; Roncaroli, F."Co,N-doped mesoporous carbons cobalt derived from coordination polymer as supercapacitors" (2019) Electrochimica Acta. 299:987-998
El editor solo permite la decarga de la versión post-print. Si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In order to obtain new materials for energy storage as supercapacitors, Cobalt–Nitrogen doped mesoporous carbons were prepared from pyrolysis of two Cobalt Metal-Organic Frameworks (MOFs), one linear coordination polymer and one complex (not polymeric). The material derived from Cobalt 2,3-pyrazinedicarboxylate polymer (700 °C) exhibited a specific capacitance of 330 F g −1 (after acid leaching, in 6 M KOH, 1 A g −1 ). This material exhibited a reduction in its capacitance of only 2% after 3000 charge-discharge cycles. A specific capacitance of 430 F g −1 was reached after the addition of ferrocianide to the electrolyte. A correlation was found between the specific capacitance and both the specific surface area of mesopores and the Cobalt content. This correlation allowed discriminating between the pseudocapacitance and the double layer contributions to the total specific capacitance. Finally, a prototype symmetric capacitor was constructed which yielded a specific energy of 9.1 W h kg −1 (0.1 A g −1 ) and a specific power of 7 kW kg −1 (10 A g −1 ). A device constructed with two of these capacitors in series allowed to light a 1.5 V red LED. © 2019 Elsevier Ltd

Registro:

Documento: Artículo
Título:Co,N-doped mesoporous carbons cobalt derived from coordination polymer as supercapacitors
Autor:Díaz-Duran, A.K.; Montiel, G.; Viva, F.A.; Roncaroli, F.
Filiación:Departamento de Física de la Materia Condensada, Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, San Martín, Buenos Aires, 1650, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET., Godoy Cruz 2290, Ciudad de Buenos Aires, 1425, Argentina
Palabras clave:Cobalt; Coordination polymer; Metal-organic framework; Pseudocapacitance; Supercapacitor; Capacitance; Cobalt; Coordination reactions; Crystalline materials; Doping (additives); Electrolytes; Mesoporous materials; Organic polymers; Organometallics; Potassium hydroxide; Charge-discharge cycle; Coordination Polymers; Metal organic framework; Metalorganic frameworks (MOFs); N-doped mesoporous carbons; Nitrogen-doped mesoporous carbons; Pseudocapacitance; Specific capacitance; Supercapacitor
Año:2019
Volumen:299
Página de inicio:987
Página de fin:998
DOI: http://dx.doi.org/10.1016/j.electacta.2019.01.023
Handle:http://hdl.handle.net/20.500.12110/paper_00134686_v299_n_p987_DiazDuran
Título revista:Electrochimica Acta
Título revista abreviado:Electrochim Acta
ISSN:00134686
CODEN:ELCAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134686_v299_n_p987_DiazDuran

Referencias:

  • Ngo, J.N.C., Our Energy Future: Resources, Alternatives and the Environment (2009), Wiley; Huggins, R., Energy Storage (2010), Springer US; Bagotsky, A.M.S.V.S., Volfkovich, Y.M., Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors (2015), Wiley; Wu, Z., Li, L., Yan, J.-M., Zhang, X.-B., Materials design and system construction for conventional and new-concept supercapacitors (2017) Advanced Science, 4, p. 1600382
  • Sk, M.M., Yue, C.Y., Ghosh, K., Jena, R.K., Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors (2016) J. Power Sources, 308, pp. 121-140
  • Li, P., Jin, Z., Peng, L., Zhao, F., Xiao, D., Jin, Y., Yu, G., Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels (2018) Adv. Mater., 30, p. 1800124
  • Kim, J., Kim, J.H., Ariga, K., Redox-active polymers for energy storage nanoarchitectonics (2017) Joule, 1, pp. 739-768
  • Borenstein, A., Hanna, O., Attias, R., Luski, S., Brousse, T., Aurbach, D., Carbon-based composite materials for supercapacitor electrodes: a review (2017) J. Mater. Chem., 5, pp. 12653-12672
  • Salunkhe, R.R., Lee, Y.-H., Chang, K.-H., Li, J.-M., Simon, P., Tang, J., Torad, N.L., Yamauchi, Y., Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications (2014) Chem. Eur J., 20, pp. 13838-13852
  • Salunkhe, R.R., Tang, J., Kobayashi, N., Kim, J., Ide, Y., Tominaka, S., Kim, J.H., Yamauchi, Y., Ultrahigh performance supercapacitors utilizing core–shell nanoarchitectures from a metal–organic framework-derived nanoporous carbon and a conducting polymer (2016) Chem. Sci., 7, pp. 5704-5713
  • Shen, L., Du, L., Tan, S., Zang, Z., Zhao, C., Mai, W., Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires (2016) Chem. Commun., 52, pp. 6296-6299
  • Young, C., Wang, J., Kim, J., Sugahara, Y., Henzie, J., Yamauchi, Y., Controlled chemical vapor deposition for synthesis of nanowire arrays of metal–organic frameworks and their thermal conversion to carbon/metal oxide hybrid materials (2018) Chem. Mater., 30, pp. 3379-3386
  • Wang, J., Tang, J., Ding, B., Malgras, V., Chang, Z., Hao, X., Wang, Y., Yamauchi, Y., Hierarchical porous carbons with layer-by-layer motif architectures from confined soft-template self-assembly in layered materials (2017) Nat. Commun., 8, p. 15717
  • Arencibia, N., Oestreicher, V., Viva, F.A., Jobbágy, M., Nanotextured alpha Ni(ii)–Co(ii) hydroxides as supercapacitive active phases (2017) RSC Adv., 7, pp. 5595-5600
  • Batten, N.R.C.S.R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Paik Suh, M., Reedijk, J., Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013) (2013) Pure Appl. Chem., 85, pp. 1715-1724
  • Kaskel, S., The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications (2016), Wiley; Li, B., Wen, H.-M., Zhou, W., Chen, B., Porous metal–organic frameworks for gas storage and separation: what, how, and why? (2014) J. Phys. Chem. Lett., 5, pp. 3468-3479
  • Wang, L., Zheng, M., Xie, Z., Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise (2018) J. Mater. Chem. B, 6, pp. 707-717
  • Stassen, I., Burtch, N., Talin, A., Falcaro, P., Allendorf, M., Ameloot, R., An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors (2017) Chem. Soc. Rev., 46, pp. 3185-3241
  • Zhu, L., Liu, X.-Q., Jiang, H.-L., Sun, L.-B., Metal–organic frameworks for heterogeneous basic catalysis (2017) Chem. Rev., 117, pp. 8129-8176
  • Dolgopolova, E.A., Shustova, N.B., Metal–organic framework photophysics: optoelectronic devices, photoswitches, sensors, and photocatalysts (2016) MRS Bull., 41, pp. 890-896
  • Liu, X., Shi, C., Zhai, C., Cheng, M., Liu, Q., Wang, G., Cobalt-based layered metal–organic framework as an ultrahigh capacity supercapacitor electrode material (2016) ACS Appl. Mater. Interfaces, 8, pp. 4585-4591
  • Du, P., Dong, Y., Liu, C., Wei, W., Liu, D., Liu, P., Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor (2018) J. Colloid Interface Sci., 518, pp. 57-68
  • Yang, J., Xiong, P., Zheng, C., Qiu, H., Wei, M., Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode (2014) J. Mater. Chem., 2, pp. 16640-16644
  • Qu, C., Jiao, Y., Zhao, B., Chen, D., Zou, R., Walton, K.S., Liu, M., Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study (2016) Nano Energy, 26, pp. 66-73
  • Hou, S., Xu, X., Wang, M., Xu, Y., Lu, T., Yao, Y., Pan, L., Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors (2017) J. Mater. Chem., 5, pp. 19054-19061
  • Khan, I.A., Badshah, A., Nadeem, M.A., Haider, N., Nadeem, M.A., A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications (2014) Int. J. Hydrogen Energy, 39, pp. 19609-19620
  • Mahmood, A., Zou, R., Wang, Q., Xia, W., Tabassum, H., Qiu, B., Zhao, R., Nanostructured electrode materials derived from metal–organic framework xerogels for high-energy-density asymmetric supercapacitor (2016) ACS Appl. Mater. Interfaces, 8, pp. 2148-2157
  • Wang, Q., Gao, F., Xu, B., Cai, F., Zhan, F., Gao, F., Wang, Q., ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor (2017) Chem. Eng. J., 327, pp. 387-396
  • Zeng, W., Wang, L., Shi, H., Zhang, G., Zhang, K., Zhang, H., Gong, F., Duan, H., Metal–organic-framework-derived ZnO@C@NiCo2O4 core–shell structures as an advanced electrode for high-performance supercapacitors (2016) J. Mater. Chem., 4, pp. 8233-8241
  • Salunkhe, R.R., Kaneti, Y.V., Yamauchi, Y., Metal–organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects (2017) ACS Nano, 11, pp. 5293-5308
  • Salunkhe, R.R., Young, C., Tang, J., Takei, T., Ide, Y., Kobayashi, N., Yamauchi, Y., A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte (2016) Chem. Commun., 52, pp. 4764-4767
  • Díaz-Duran, A.K., Roncaroli, F., MOF derived mesoporous nitrogen doped carbons with high activity towards oxygen reduction (2017) Electrochim. Acta, 251, pp. 638-650
  • Lota, G., Grzyb, B., Machnikowska, H., Machnikowski, J., Frackowiak, E., Effect of nitrogen in carbon electrode on the supercapacitor performance (2005) Chem. Phys. Lett., 404, pp. 53-58
  • Beattie, S.D., Manolescu, D.M., Blair, S.L., High-capacity lithium–air cathodes (2009) J. Electrochem. Soc., 156, pp. A44-A47
  • Kim, J., Young, C., Lee, J., Park, M.-S., Shahabuddin, M., Yamauchi, Y., Kim, J.H., CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors (2016) Chem. Commun., 52, pp. 13016-13019
  • Han, S.A., Lee, J., Shim, K., Lin, J., Shahabuddin, M., Lee, J.-W., Kim, S.-W., Kim, J.H., Strategically designed zeolitic imidazolate frameworks for controlling the degree of graphitization (2018) Bull. Chem. Soc. Jpn., 91, pp. 1474-1480
  • Tang, J., Salunkhe, R.R., Zhang, H., Malgras, V., Ahamad, T., Alshehri, S.M., Kobayashi, N., Yamauchi, Y., Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons (2016) Sci. Rep., 6, p. 30295
  • Kaniyoor, A., Ramaprabhu, S., A Raman spectroscopic investigation of graphite oxide derived graphene (2012) AIP Adv., 2, p. 032183
  • Wang, Z., Yan, T., Fang, J., Shi, L., Zhang, D., Nitrogen-doped porous carbon derived from a bimetallic metal–organic framework as highly efficient electrodes for flow-through deionization capacitors (2016) J. Mater. Chem., 4, pp. 10858-10868
  • Wang, H., Yi, H., Zhu, C., Wang, X., Jin Fan, H., Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes (2015) Nano Energy, 13, pp. 658-669
  • Xia, B.Y., Yan, Y., Li, N., Wu, H.B., Lou, X.W., Wang, X., A metal–organic framework-derived bifunctional oxygen electrocatalyst (2016) Nature Energy, 1, p. 15006
  • Choi, H.C., Jung, Y.M., Noda, I., Kim, S.B., A study of the mechanism of the electrochemical reaction of lithium with CoO by two-dimensional soft X-ray absorption spectroscopy (2D XAS), 2D Raman, and 2D heterospectral XAS−Raman correlation analysis (2003) J. Phys. Chem. B, 107, pp. 5806-5811
  • Xia, W., Zhu, J., Guo, W., An, L., Xia, D., Zou, R., Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction (2014) J. Mater. Chem., 2, pp. 11606-11613
  • Wang, X., Zhou, J., Fu, H., Li, W., Fan, X., Xin, G., Zheng, J., Li, X., MOF derived catalysts for electrochemical oxygen reduction (2014) J. Mater. Chem., 2, pp. 14064-14070
  • Sing, K.S.W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (1985) Pure Appl. Chem., 57, pp. 603-619
  • Mahmood, N., Zhang, C., Yin, H., Hou, Y., Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells (2014) J. Mater. Chem., 2, pp. 15-32
  • Niu, K., Yang, B., Cui, J., Jin, J., Fu, X., Zhao, Q., Zhang, J., Graphene-based non-noble-metal Co/N/C catalyst for oxygen reduction reaction in alkaline solution (2013) J. Power Sources, 243, pp. 65-71
  • Zhang, T., He, C., Sun, F., Ding, Y., Wang, M., Peng, L., Wang, J., Lin, Y., Co3O4 nanoparticles anchored on nitrogen-doped reduced graphene oxide as a multifunctional catalyst for H2O2 reduction, oxygen reduction and evolution reaction (2017) Sci. Rep., 7, p. 43638
  • Shi, R., Chen, G., Ma, W., Zhang, D., Qiu, G., Liu, X., Shape-controlled synthesis and characterization of cobalt oxides hollow spheres and octahedra (2012) Dalton Trans., 41, pp. 5981-5987
  • Barreca, D., Gasparotto, A., Lebedev, O.I., Maccato, C., Pozza, A., Tondello, E., Turner, S., Van Tendeloo, G., Controlled vapor-phase synthesis of cobalt oxide nanomaterials with tuned composition and spatial organization (2010) CrystEngComm, 12, pp. 2185-2197
  • Onbaşlı, M.C., Goto, T., Tang, A., Pan, A., Battal, E., Okyay, A.K., Dionne, G.F., Ross, C.A., Oxygen partial pressure dependence of magnetic, optical and magneto-optical properties of epitaxial cobalt-substituted SrTiO₃ films (2015) Opt Express, 23, pp. 13399-13409
  • Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., Smart, R.S.C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni (2011) Appl. Surf. Sci., 257, pp. 2717-2730
  • Lv, L.-P., Wu, Z.-S., Chen, L., Lu, H., Zheng, Y.-R., Weidner, T., Feng, X., Crespy, D., Precursor-controlled and template-free synthesis of nitrogen-doped carbon nanoparticles for supercapacitors (2015) RSC Adv., 5, pp. 50063-50069
  • Xia, X.-H., Tu, J.-P., Zhang, Y.-Q., Mai, Y.-J., Wang, X.-L., Gu, C.-D., Zhao, X.-B., Freestanding Co3O4 nanowire array for high performance supercapacitors (2012) RSC Adv., 2, pp. 1835-1841
  • Yang, M., Zhou, Z., Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials (2017) Adv. Sci., 4, p. 1600408
  • Salunkhe, R.R., Tang, J., Kamachi, Y., Nakato, T., Kim, J.H., Yamauchi, Y., Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework (2015) ACS Nano, 9, pp. 6288-6296
  • Lei, Y., Gan, M., Ma, L., Jin, M., Zhang, X., Fu, G., Yang, P., Yan, M., Synthesis of nitrogen-doped porous carbon from zeolitic imidazolate framework-67 and phenolic resin for high performance supercapacitors (2017) Ceram. Int., 43, pp. 6502-6510
  • Chen, X., Paul, R., Dai, L., Carbon-based supercapacitors for efficient energy storage (2017) National Sci. Rev., 4, pp. 453-489
  • Ke, F.-S., Wu, Y.-S., Deng, H., Metal-organic frameworks for lithium ion batteries and supercapacitors (2015) J. Solid State Chem., 223, pp. 109-121
  • Bao, W., Mondal, A.K., Xu, J., Wang, C., Su, D., Wang, G., 3D hybrid–porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors (2016) J. Power Sources, 325, pp. 286-291
  • Jeon, J.-W., Sharma, R., Meduri, P., Arey, B.W., Schaef, H.T., Lutkenhaus, J.L., Lemmon, J.P., Nune, S.K., In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors (2014) ACS Appl. Mater. Interfaces, 6, pp. 7214-7222
  • Xu, X., Shi, W., Li, P., Ye, S., Ye, C., Ye, H., Lu, T., Cao, X., Facile fabrication of three-dimensional graphene and metal–organic framework composites and their derivatives for flexible all-solid-state supercapacitors (2017) Chem. Mater., 29, pp. 6058-6065
  • Yang, J., Wei, F., Sui, Y., Qi, J., He, Y., Meng, Q., Zhang, S., Co3O4 nanocrystals derived from a zeolitic imidazolate framework on Ni foam as high-performance supercapacitor electrode material (2016) RSC Adv., 6, pp. 61803-61808
  • Wang, T., Zhang, S., Yan, X., Lyu, M., Wang, L., Bell, J., Wang, H., 2-Methylimidazole-Derived Ni–Co layered double hydroxide nanosheets as high rate capability and high energy density storage material in hybrid supercapacitors (2017) ACS Appl. Mater. Interfaces, 9, pp. 15510-15524
  • Wang, W., Guo, S., Lee, I., Ahmed, K., Zhong, J., Favors, Z., Zaera, F., Ozkan, C.S., Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors (2014) Sci. Rep., 4, p. 4452
  • Sivaraman, P., Mishra, S.P., Potphode, D.D., Thakur, A.P., Shashidhara, K., Samui, A.B., Bhattacharyya, A.R., A supercapacitor based on longitudinal unzipping of multi-walled carbon nanotubes for high temperature application (2015) RSC Adv., 5, pp. 83546-83557
  • Taberna, P.L., Simon, P., Fauvarque, J.F., Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors (2003) J. Electrochem. Soc., 150, pp. A292-A300
  • Kötz, R., Carlen, M., Principles and applications of electrochemical capacitors (2000) Electrochim. Acta, 45, pp. 2483-2498
  • Wei, J., Zhou, D., Sun, Z., Deng, Y., Xia, Y., Zhao, D., A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors (2012) Adv. Funct. Mater., 23, pp. 2322-2328
  • Chen, L.-F., Zhang, X.-D., Liang, H.-W., Kong, M., Guan, Q.-F., Chen, P., Wu, Z.-Y., Yu, S.-H., Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors (2012) ACS Nano, 6, pp. 7092-7102
  • Wei, W., Cui, X., Chen, W., Ivey, D.G., Manganese oxide-based materials as electrochemical supercapacitor electrodes (2011) Chem. Soc. Rev., 40, pp. 1697-1721
  • Salunkhe, R.R., Kaneti, Y.V., Kim, J., Kim, J.H., Yamauchi, Y., Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications (2016) Acc. Chem. Res., 49, pp. 2796-2806

Citas:

---------- APA ----------
Díaz-Duran, A.K., Montiel, G., Viva, F.A. & Roncaroli, F. (2019) . Co,N-doped mesoporous carbons cobalt derived from coordination polymer as supercapacitors. Electrochimica Acta, 299, 987-998.
http://dx.doi.org/10.1016/j.electacta.2019.01.023
---------- CHICAGO ----------
Díaz-Duran, A.K., Montiel, G., Viva, F.A., Roncaroli, F. "Co,N-doped mesoporous carbons cobalt derived from coordination polymer as supercapacitors" . Electrochimica Acta 299 (2019) : 987-998.
http://dx.doi.org/10.1016/j.electacta.2019.01.023
---------- MLA ----------
Díaz-Duran, A.K., Montiel, G., Viva, F.A., Roncaroli, F. "Co,N-doped mesoporous carbons cobalt derived from coordination polymer as supercapacitors" . Electrochimica Acta, vol. 299, 2019, pp. 987-998.
http://dx.doi.org/10.1016/j.electacta.2019.01.023
---------- VANCOUVER ----------
Díaz-Duran, A.K., Montiel, G., Viva, F.A., Roncaroli, F. Co,N-doped mesoporous carbons cobalt derived from coordination polymer as supercapacitors. Electrochim Acta. 2019;299:987-998.
http://dx.doi.org/10.1016/j.electacta.2019.01.023