Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Glassy carbon electrodes (GC) were modified with multiwalled carbon nanotubes (MWCNT/GC) and electrochemically treated first by applying an oxidation potential and then a reduction potential. The resulting electrodes were characterized via scanning electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and electrochemical techniques, particularly cyclic voltammetry using the redox probes Fe(CN)6 3− /4- and Ru(NH3)2+/3+ and electrochemical impedance spectroscopy using Fe(CN)6 3− /4-. These modified electrodes showed an electrochemical determination selective for dopamine (DA) and serotonin (5HT) in the presence of ascorbic acid (AA) and uric acid (UA), simultaneously measured, with a high reproducibility (an RSD of 1.7% for DA and 1.6% for 5HT) and a limit of detection (LOD) of 235 nmol L−1 for DA and 460 nmol L−1 for 5HT. The GC electrodes modified with oxidized MWCNT, subsequently reduced, showed higher selectivity towards the oxidation of DA and 5HT compared with GC bare electrodes or modified with MWCNT or oxidized MWCNT. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:Fused and unzipped carbon nanotubes, electrochemically treated, for selective determination of dopamine and serotonin
Autor:Bonetto, M.C.; Muñoz, F.F.; Diz, V.E.; Sacco, N.J.; Cortón, E.
Filiación:Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
DEINSO (Departamento de Investigaciones en Sólidos), UNIDEF-CITEDEF, J.B. de la Salle 4397, (1603) Villa Martelli, Buenos Aires, Argentina
CONICET, Buenos Aires, Argentina
Palabras clave:Dopamine; Electrochemical treatment; Hybrid film; Multiwalled carbon nanotubes; Serotonin; Amines; Ascorbic acid; Chemical detection; Cyclic voltammetry; Electrochemical impedance spectroscopy; Energy dispersive spectroscopy; Glass membrane electrodes; Neurophysiology; Oxidation; Scanning electron microscopy; Yarn; Dopamine; Electrochemical determination; Electrochemical techniques; Electrochemical treatments; Glassy carbon electrodes; Hybrid film; Selective determination; Serotonin; Multiwalled carbon nanotubes (MWCN)
Año:2018
Volumen:283
Página de inicio:338
Página de fin:348
DOI: http://dx.doi.org/10.1016/j.electacta.2018.06.179
Título revista:Electrochimica Acta
Título revista abreviado:Electrochim Acta
ISSN:00134686
CODEN:ELCAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134686_v283_n_p338_Bonetto

Referencias:

  • Magdesieva, T.V., Shvets, P.V., Nikitin, O.M., Obraztsova, E.A., Tuyakova, F.T., Sergeyev, V.G., Khokhlov, A.R., Obraztsov, A.N., Electrochemical characterization of mesoporous nanographite films (2016) Carbon, 105, pp. 96-102
  • Nardecchia, S., Carriazo, D., Ferrer, M.L., Gutiérrez, M.C., del Monte, F., Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications (2013) Chem. Soc. Rev., 42, pp. 794-830
  • Yang, C., Denno, M.E., Pyakurel, P., Venton, B.J., Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review (2015) Anal. Chim. Acta, 887, pp. 17-37
  • Rahman, M., Beg, S., Ahmad, M.Z., Anwar, F., Kumar, V., Graphene and its diverse applications in healthcare systems (2016) Graphene Science Handbook, 5, p. 399. , M. Aliofkhazraei N. Ali W.I. Milne C.S. Ozkan S. Mitura J.L. Gervasoni CRC Press Taylor & Francis Group Florida Sec. III
  • Pandikumar, A., How, G.T.S., See, T.P., Omar, F.S., Jayabal, S., Kamali, K.Z., Yusoff, N., Huang, N.M., Graphene and its nanocomposite material based electrochemical sensor platform for dopamine (2014) RSC Adv., 4, pp. 63296-63323
  • Sreeprasad, T.S., Berry, V., How do the electrical properties of graphene change with its functionalization? (2013) Small, 9, pp. 341-350
  • Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Novoselov, K.S., Control of graphene's properties by reversible hydrogenation: evidence for graphane (2009) Science, 323, pp. 610-613
  • Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties (2009) Nano Lett., 9, pp. 1752-1758
  • Mohanty, N., Moore, D., Xu, Z., Sreeprasad, T.S., Nagaraja, A., Rodriguez, A.A., Berry, V., Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size (2012) Nat. Commun., 3, pp. 1-8
  • Hummers, W.S., Offeman, R.E., Preparation of graphitic oxide (1958) J. Am. Chem. Soc., 80. , 1339-1339
  • Sharma, K.R., Synthesis methods for graphene (2016) Graphene Science Handbook, 1, p. 31. , M. Aliofkhazraei N. Ali W.I. Milne C.S. Ozkan S. Mitura J.L. Gervasoni Sec. I, CRC Press Taylor & Francis Group Florida
  • Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons (2009) Nature, 458, pp. 872-876
  • Guo, H.L., Wang, X.F., Qian, Q.Y., Wang, F.B., Xia, X.H., A green approach to the synthesis of graphene nanosheets (2009) ACS Nano, 3, pp. 2653-2659
  • Shinde, D.B., Debgupta, J., Kushwaha, A., Aslam, M., Pillai, V.K., Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons (2011) J. Am. Chem. Soc., 133, pp. 4168-4171
  • Yao, J.K., Dougherty, G.G., Jr., Reddy, R.D., Keshavan, M.S., Montrose, D.M., Matson, W.R., Rozen, S., Kaddurah-Daouk, R., Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia (2009) Mol. Psychiatr., 15, pp. 938-953
  • Roiser, J.P., McLean, A., Ogilvie, A.D., Blackwell, A.D., Bamber, D.J., Goodyer, I., Jones, P.B., Sahakian, B.J., The subjective and cognitive effects of acute phenylalanine and tyrosine depletion in patients recovered from depression (2005) Neuropsychopharmacology, 30, pp. 775-785
  • Han, H.S., Lee, H.K., You, J.-M., Jeong, H., Jeon, S., Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GO-porphyrin (2014) Sens. Actuators B, 190, pp. 886-895
  • De Deurwaerdère, P., Di Giovanni, G., Serotonergic modulation of the activity of mesencephalic dopaminergic systems: therapeutic implications (2017) Prog. Neurobiol., 151, pp. 175-236
  • Kissinger, P.T., Hart, J.B., Adams, R.N., Voltammetry in brain tissue - a new neurophysiological measurement (1973) Brain Res., 55, pp. 209-213
  • Ali, S.R., Parajuli, R.R., Balogun, Y., Ma, Y., He, H., A non oxidative electrochemical sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine: a review (2008) Sensors, 8, pp. 8423-8452
  • Robinson, D.L., Hermans, A., Seipel, A.T., Wightman, R.M., Monitoring rapid chemical communication in the brain (2008) Chem. Rev., 108, pp. 2554-2584
  • Troyer, K.P., Heien, M.L., Venton, B.J., Wightman, R.M., Neurochemistry and electroanalytical probes (2002) Curr. Opin. Chem. Biol., 6, pp. 696-703
  • Xu, T.-Q., Zhang, Q.-L., Zheng, J.-N., Lv, Z.-Y., Wei, J., Wang, A.-J., Feng, J.-J., Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide (2014) Electrochim. Acta, 115, pp. 109-115
  • Yang, L., Liu, D., Huang, J., You, T., Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode (2014) Sens. Actuators B, 193, pp. 166-172
  • Qi, S., Zhao, B., Tang, H., Jiang, X., Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene (2015) Electrochim. Acta, 161, pp. 395-402
  • Zhou, J., Sheng, M., Jiang, X., Wu, G., Gao, F., Simultaneous determination of dopamine, serotonin and ascorbic acid at a glassy carbon electrode modified with carbon-spheres (2013) Sensors, 13, pp. 14029-14040
  • Li, H., Wang, Y., Ye, D., Luo, J., Su, B., Zhang, S., Kong, J., An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite (2014) Talanta, 127, pp. 255-261
  • Filik, H., Avan, A.A., Aydar, S., Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode (2015) Arab. J. Chem., 9, pp. 471-480
  • Wang, C., Yuan, R., Yaquin, C., Chen, S., Hu, F., Zhang, M., Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode (2012) Anal. Chim. Acta, 741, pp. 15-20
  • Ramachandran, A., Panda, S., Yesodha, S.K., Physiological level and selective electrochemical sensing of dopamine by a solution processable graphene and its enhanced sensing property in general (2018) Sens. Actuators B, 256, pp. 488-497
  • Velicky, M., Tam, K.Y., Dryfe, R.A.W., On the stability of the silver/silver sulfate reference electrode (2012) Anal. Methods, 4, pp. 1207-1211
  • Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform (2012) J. Cheminf., 4, pp. 1-33
  • Pei, S., Cheng, H.-M., The reduction of graphene oxide (2012) Carbon, 50, pp. 3210-3228
  • Krasheninnikov, A.V., Banhart, F., Engineering of nanostructured carbon materials with electron or ion beams (2007) Nat. Mater., 6, pp. 723-733
  • Yoon, D., Cheong, H., Raman spectroscopy for characterization of graphene (2012) Raman Spectroscopy for Nanomaterials Characterization, p. 191. , C.S.S.R. Kumar Springer Berlin Ch. 9
  • McCreery, R.L., Advanced carbon electrode materials for molecular electrochemistry (2008) Chem. Rev., 108, pp. 2646-2687
  • Brownson, D.A.C., Varey, S.A., Hussain, F., Haigh, S.J., Banks, C.E., Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene (2014) Nanoscale, 6, pp. 1607-1621
  • Lu, J., Do, I., Drzal, L.T., Worden, R.M., Lee, I., Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response (2008) ACS Nano, 2, pp. 1825-1832
  • Wang, L., Yamauchi, Y., Facile synthesis of three-dimensional dendritic platinum nanoelectrocatalyst (2009) Chem. Mater., 21, pp. 3562-3569
  • Brownson, D.A.C., Kelly, P.J., Banks, C.E., In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach (2015) RSC Adv., 5, pp. 37281-37286
  • Nicholson, R.S., Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics (1965) Anal. Chem., 37, pp. 1351-1355
  • Bard, A.J., Faulkner, L.R., Electrochemical Methods, Fundamentals and Applications (2001), Ch. 3 John Wiley & Sons Texas; Brett, C.M.A., Oliveira Brett, A.M., Electrochemistry Principles, Methods, and Applications, Part I (1993), Oxford University Press Oxford; Matsuda, H., Ayabe, Y., The theory of the cathode-ray polarography of Randles-Sevcik (1955) Z. Electrochem., 59, pp. 494-503
  • Kong, H.X., Hybrids of carbon nanotubes and graphene/graphene oxide (2013) Cur. Opin. Solid State Mater. Sci., 17, pp. 31-37

Citas:

---------- APA ----------
Bonetto, M.C., Muñoz, F.F., Diz, V.E., Sacco, N.J. & Cortón, E. (2018) . Fused and unzipped carbon nanotubes, electrochemically treated, for selective determination of dopamine and serotonin. Electrochimica Acta, 283, 338-348.
http://dx.doi.org/10.1016/j.electacta.2018.06.179
---------- CHICAGO ----------
Bonetto, M.C., Muñoz, F.F., Diz, V.E., Sacco, N.J., Cortón, E. "Fused and unzipped carbon nanotubes, electrochemically treated, for selective determination of dopamine and serotonin" . Electrochimica Acta 283 (2018) : 338-348.
http://dx.doi.org/10.1016/j.electacta.2018.06.179
---------- MLA ----------
Bonetto, M.C., Muñoz, F.F., Diz, V.E., Sacco, N.J., Cortón, E. "Fused and unzipped carbon nanotubes, electrochemically treated, for selective determination of dopamine and serotonin" . Electrochimica Acta, vol. 283, 2018, pp. 338-348.
http://dx.doi.org/10.1016/j.electacta.2018.06.179
---------- VANCOUVER ----------
Bonetto, M.C., Muñoz, F.F., Diz, V.E., Sacco, N.J., Cortón, E. Fused and unzipped carbon nanotubes, electrochemically treated, for selective determination of dopamine and serotonin. Electrochim Acta. 2018;283:338-348.
http://dx.doi.org/10.1016/j.electacta.2018.06.179