Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Chalcopyrite is the main ore mineral used in industrial copper extraction. However, when passivation processes occur during hydrometallurgical treatment, a large percentage of the mineral being treated is not solubilized, so the copper recovery is limited. Galvanic interactions between semiconductor minerals are the basis of many strategies to achieve a more efficient process for increasing copper dissolution. These interactions concern generally two metallic sulfides. The present study describes a new galvanic interaction between chalcopyrite-magnetite (CuFeS2-Fe3O4) in an acid microbial culture medium, used routinely in biomining processes. The electrochemical characterization of CuFeS2, Fe3O4 and a mineral containing CuFeS2-Fe3O4 is performed. Galvanic interactions are demonstrated by comparing Evans diagrams constructed from current transients obtained by imposing the potential pulses to each species studied. It is determined that CuFeS2 and Fe3O4 fulfil the role of anode and cathode, respectively, in the behavior of the corresponding mineral. Stripping voltammetry is used to quantify electro-dissolved ions; the electrooxidation of CuFeS2-Fe3O4 mineral in acid culture medium releases twice as many copper ions as pure chalcopyrite. This corroborates that the galvanic interactions prevent the formation of typical passivating components observed in chalcopyrite. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:Understanding galvanic interactions between chalcopyrite and magnetite in acid medium to improve copper (Bio)Leaching
Autor:Saavedra, A.; García-Meza, J.V.; Cortón, E.; González, I.
Filiación:Biosensors and Bioanalysis Laboratory (LABB), Departamento de Química Biológica and IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires, Argentina
Geomicrobiología, Facultad de Ingeniería-Metalurgia, UASLP, Sierra Leona 550, Lomas 2, San Luis Potosí, 78210, Mexico
Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, Ciudad de México, 09340, Mexico
Palabras clave:Acid culture media; Chalcopyrite; Copper extraction; Galvanic interactions; Magnetite; Stripping voltammetry; Copper; Copper compounds; Electrodes; Electrooxidation; Extraction; Hydrometallurgy; Iron compounds; Magnetite; Metal ions; Minerals; Ore treatment; Ores; Passivation; Voltammetry; Chalcopyrite; Copper extraction; Culture media; Galvanic interaction; Stripping voltammetry; Sulfur compounds
Año:2018
Volumen:265
Página de inicio:569
Página de fin:576
DOI: http://dx.doi.org/10.1016/j.electacta.2018.01.169
Título revista:Electrochimica Acta
Título revista abreviado:Electrochim Acta
ISSN:00134686
CODEN:ELCAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134686_v265_n_p569_Saavedra

Referencias:

  • Norgate, T., Jahanshahi, S., Low grade ores – smelt, leach or concentrate? (2010) Miner. Eng., 23, pp. 65-73
  • Pradhan, N., Nathsarma, K.C., Srinivasa Rao, K., Sukla, L.B., Mishra, B.K., Heap bioleaching of chalcopyrite: a review (2008) Miner. Eng., 21, pp. 355-365
  • Klauber, C., Parker, A., van Bronswijk, W., Watling, H., Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy (2001) Int. J. Miner. Process., 62, pp. 65-94
  • Klauber, C., A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution (2008) Int. J. Miner. Process., 86, pp. 1-17
  • Cathles, L.M., Apps, J.A., A model of the dump leaching process that incorporates oxygen balance, heat balance, and air convection (1975) Metall. Trans. B, 6, pp. 617-624
  • Debernardi, G., Carlesi, C., Chemical-electrochemical approaches to the study passivation of chalcopyrite (2013) Miner. Process. Extr. Metall. Rev., 34, pp. 10-41
  • Fu, K., Lin, H., Mo, X., Wang, H., Wen, H., Wen, Z., Comparative study on the passivation layers of copper sulphide minerals during bioleaching (2012) Int. J. Miner. Metall. Mater., 19, pp. 886-892
  • Pan, H., Yang, H., Tong, L., Zhong, C., Zhao, Y., Control method of chalcopyrite passivation in bioleaching (2012) Trans. Nonferrous Metals Soc. China, 22, pp. 2255-2260
  • los Santos, F.E., Rivera-Santillán, R.E., Talavera-Ortega, M., Bautista, F., Catalytic and galvanic effects of pyrite on ferric leaching of sphalerite (2016) Hydrometallurgy, 163, pp. 167-175
  • Holmes, P.R., Crundwell, F.K., Kinetic aspects of galvanic interactions between minerals during dissolution (1995) Hydrometallurgy, 39, pp. 353-375
  • Abraitis, P.K., Pattrick, R.A.D., Kelsall, G.H., Vaughan, D.J., Acid leaching and dissolution of major sulphide ore minerals: processes and galvanic effects in complex systems (2004) Miner. Mag., 68, pp. 343-351
  • Rao, S.R., Finch, J.A., Galvanic interaction studies on sulphide minerals (1988) Can. Metall. Q., 27, pp. 253-259
  • Das, T., Ayyappan, S., Chaudhury, G.R., Factors affecting bioleaching kinetics of sulfide ores using acidophilic micro-organisms (1999) Biometals, 12, pp. 1-10
  • Suzuki, I., Microbial leaching of metals from sulfide minerals (2001) Biotechnol. Adv., 19, pp. 119-132
  • Urbano, G., Meléndez, A.M., Reyes, V.E., Veloz, M.A., González, I., Galvanic interactions between galena–sphalerite and their reactivity (2007) Int. J. Miner. Process., 82, pp. 148-155
  • Urbano, G., Reyes, V.E., Veloz, M.A., González, I., Pyrite−arsenopyrite galvanic interaction and electrochemical reactivity (2008) J. Phys. Chem. C, 112, pp. 10453-10461
  • Wang, J., Tao, L., Zhao, H., Hu, M., Zheng, X., Peng, H., Gan, X., Wang, D., Cooperative effect of chalcopyrite and bornite interactions during bioleaching by mixed moderately thermophilic culture (2016) Miner. Eng., 95, pp. 116-123
  • Zhao, H., Wang, J., Gan, X., Zheng, X., Tao, L., Hu, M., Li, Y., Qiu, G., Effects of pyrite and bornite on bioleaching of two different types of chalcopyrite in the presence of Leptospirillum ferriphilum (2015) Bioresour. Technol., 194, pp. 28-35
  • Nazari, G., Dixon, D.G., Dreisinger, D.B., Enhancing the kinetics of chalcopyrite leaching in the GalvanoxTM process (2011) Hydrometallurgy, 105, pp. 251-258
  • Dixon, D.G., Mayne, D.D., Baxter, K.G., GalvanoxTM – a novel galvanically-assisted atmospheric leaching technology for copper concentrates (2008) Can. Metall. Q., 47, pp. 327-336
  • Ekmekçi, Z., Demirel, H., Effects of galvanic interaction on collector less flotation behaviour of chalcopyrite and pyrite (1997) Int. J. Miner. Process., 52, pp. 31-48
  • Mehta, A.P., Murr, L.E., Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides (1983) Hydrometallurgy, 9, pp. 235-256
  • Berry, V.K., Murr, L.E., Hiskey, J.B., Galvanic interaction between chalcopyrite and pyrite during bacterial leaching of low-grade waste (1978) Hydrometallurgy, 3, pp. 309-326
  • Mehta, A.P., Murr, L.E., Kinetic study of sulfide leaching by galvanic interaction between chalcopyrite, pyrite, and sphalerite in the presence of T. ferrooxidans (30°C) and a thermophilic microorganism (55°C) (1982) Biotechnol. Bioeng., 24, pp. 919-940
  • Makvandi, S., Beaudoin, G., McClenaghan, B.M., Layton-Matthews, D., The surface texture and morphology of magnetite from the Izok Lake volcanogenic massive sulfide deposit and local glacial sediments, Nunavut, Canada: application to mineral exploration (2015) J. Geochem. Explor., 150, pp. 84-103
  • Kim, T.W., Kim, C.J., Chang, Y.K., Ryu, H.W., Cho, K.S., Development of an optimal medium for continuous ferrous iron oxidation by immobilized Acidothiobacillus ferrooxidans cells (2002) Biotechnol. Prog., 18, pp. 752-759
  • Bard, A.J., Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications (1980), Wiley New York; Nava, J.L., González, I., Nava, D., Electrochemical study of a flotation zinc concentrate in sulfuric acid: galvanic interactions affecting the rate of dissolution of sphalerite (2006) ECS Trans., 2, pp. 143-153
  • Nava, J.L., Oropeza, M.T., González, I., Oxidation of mineral species as a function of the anodic potential of zinc concentrate in sulfuric acid (2004) J. Electrochem. Soc., 151, pp. B387-B393
  • Gomez Gonzalez, M., Dominguez Renedo, O., Arcos Martinez, M., Speciation of antimony by adsorptive stripping voltammetry using pyrogallol (2007) Talanta, 71, pp. 691-698
  • Stozhko, N.Y., Inzhevatova, O.V., Kolyadina, L.I., Determination of iron in natural and drinking waters by stripping voltammetry (2005) J. Anal. Chem., 60, pp. 668-672
  • Nolan, M.A., Kounaves, S.P., The source of the anomalous cathodic peak during ASV with in situ mercury film formation in chloride solutions (2000) Electroanalysis, 12, pp. 96-99
  • Rahner, D., Fe3O4 as part of the passive layer on iron (1996) Solid State Ionics, 86-88, pp. 865-871
  • White, A.F., Peterson, M.L., Hochella, M.F., Electrochemistry and dissolution kinetics of magnetite and ilmenite (1994) Geochem. Cosmochim. Acta, 58, pp. 1859-1875
  • Lara, R.H., Vazquez-Arenas, J., Ramos-Sanchez, G., Galvan, M., Lartundo-Rojas, L., Experimental and theoretical analysis accounting for differences of pyrite and chalcopyrite oxidative behaviors for prospective environmental and bioleaching applications (2015) J. Phys. Chem. C, 119, pp. 18364-18379
  • Gu, G., Hu, K., Zhang, X., Xiong, X., Yang, H., The stepwise dissolution of chalcopyrite bioleached by Leptospirillum ferriphilum (2013) Electrochim. Acta, 103, pp. 50-57
  • Liang, C.L., Xia, J.L., Yang, Y., Nie, Z.Y., Zhao, X.J., Zheng, L., Ma, C.Y., Zhao, Y.D., Characterization of the thermo-reduction process of chalcopyrite at 65 °C by cyclic voltammetry and XANES spectroscopy (2011) Hydrometallurgy, 107, pp. 13-21
  • Arce, E.M., Gonzalez, I., A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution (2002) Int. J. Miner. Process., 67, pp. 17-28
  • Eghbalnia, M., Dixon, D.G., Electrochemical study of leached chalcopyrite using solid paraffin-based carbon paste electrodes (2011) Hydrometallurgy, 110, pp. 1-12
  • Zhao, H., Wang, J., Qin, W., Hu, M., Zhu, S., Qiu, G., Electrochemical dissolution process of chalcopyrite in the presence of mesophilic microorganisms (2015) Miner. Eng., 71, pp. 159-169
  • Mikhlin, Y.L., Tomashevich, Y.V., Asanov, I.P., V Okotrub, A., Varnek, V.A., V Vyalikh, D., Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acidic solutions (2004) Appl. Surf. Sci., 225, pp. 395-409
  • Mansfeld, F., Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves (2005) Corrosion Sci., 47, pp. 3178-3186
  • Nava, D., González, I., Electrochemical characterization of chemical species formed during the electrochemical treatment of chalcopyrite in sulfuric acid (2006) Electrochim. Acta, 51, pp. 5295-5303
  • Almeida, T.D.C., Garcia, E.M., da Silva, H.W.A., Matencio, T., Lins, V.D.F.C., Electrochemical study of chalcopyrite dissolution in sulfuric, nitric and hydrochloric acid solutions (2016) Int. J. Miner. Process., 149, pp. 25-33
  • Harmer, S.L., Thomas, J.E., Fornasiero, D., Gerson, A.R., The evolution of surface layers formed during chalcopyrite leaching (2006) Geochem. Cosmochim. Acta, 70, pp. 4392-4402
  • Li, Y., Qian, G., Li, J., Gerson, A.R., Kinetics and roles of solution and surface species of chalcopyrite dissolution at 650 mV (2015) Geochem. Cosmochim. Acta, 161, pp. 188-202
  • Sasaki, K., Takatsugi, K., Ishikura, K., Hirajima, T., Spectroscopic study on oxidative dissolution of chalcopyrite, enargite and tennantite at different pH values (2010) Hydrometallurgy, 100, pp. 144-151
  • Li, Y., Kawashima, N., Li, J., Chandra, A.P., Gerson, A.R., A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite (2013) Adv. Colloid Interface Sci., 197-198, pp. 1-32

Citas:

---------- APA ----------
Saavedra, A., García-Meza, J.V., Cortón, E. & González, I. (2018) . Understanding galvanic interactions between chalcopyrite and magnetite in acid medium to improve copper (Bio)Leaching. Electrochimica Acta, 265, 569-576.
http://dx.doi.org/10.1016/j.electacta.2018.01.169
---------- CHICAGO ----------
Saavedra, A., García-Meza, J.V., Cortón, E., González, I. "Understanding galvanic interactions between chalcopyrite and magnetite in acid medium to improve copper (Bio)Leaching" . Electrochimica Acta 265 (2018) : 569-576.
http://dx.doi.org/10.1016/j.electacta.2018.01.169
---------- MLA ----------
Saavedra, A., García-Meza, J.V., Cortón, E., González, I. "Understanding galvanic interactions between chalcopyrite and magnetite in acid medium to improve copper (Bio)Leaching" . Electrochimica Acta, vol. 265, 2018, pp. 569-576.
http://dx.doi.org/10.1016/j.electacta.2018.01.169
---------- VANCOUVER ----------
Saavedra, A., García-Meza, J.V., Cortón, E., González, I. Understanding galvanic interactions between chalcopyrite and magnetite in acid medium to improve copper (Bio)Leaching. Electrochim Acta. 2018;265:569-576.
http://dx.doi.org/10.1016/j.electacta.2018.01.169