Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In order to obtain Platinum-free catalysts for the Oxygen Reduction Reaction (ORR) in Fuel Cells, Nitrogen doped mesoporous carbons were prepared from pyrolysis of three Cobalt metal organic frameworks (MOFs), one linear coordination polymer and one complex. Electron micrographs revealed the presence of pores of different sizes in the samples. Particles resembled polyhedrons, sponges, bars, etc. The catalyst derived from Cobalt 2,3-pyrazinedicarboxylate polymer (700 °C) exhibited attractive electrokinetic parameters for the ORR comparable to those of Pt 20% in acidic medium (Tafel slope = 82 mV dec−1, exchange current density = 10 mA cm−1, equilibrium potential = 907 mV (vs RHE), half wave potential = 720 mV (vs RHE), number of exchanged electrons ca. 4.0, 0.5 M H2SO4). Limiting current and H2O2 yield (< 10%) are similar to those of ZIF-67 derived materials. The half wave potential is shifted to 820 mv (vs RHE) in alkaline medium (0.1 M KOH). The former sample holds a surface area on mesopores which duplicates that of the ZIF-67 700 °C. A correlation was found between the current intensity for the ORR and the mesopore area occupied by N (%N x specific area on mesopores). The Cobalt 2,3-pyrazinedicarboxylate derived material (700 °C) showed high methanol tolerance compared to Pt 20% (0.05 M methanol, 0.5 M H2SO4), and good ORR durability (after 3000 cycles between 0.25–1.15 V vs RHE, O2 saturated 0.5M H2SO4). © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:MOF derived Mesoporous Nitrogen doped Carbons with high Activity towards Oxygen Reduction
Autor:Díaz-Duran, A.K.; Roncaroli, F.
Filiación:Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, San Martín, Buenos Aires 1650, Argentina
Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, San Martín, Buenos Aires 1650, Argentina
Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, San Martín, Buenos Aires 1650, Argentina
Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Ciudad de Buenos Aires, 1428, Argentina
Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, San Martín, Buenos Aires 1650, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Godoy Cruz 2290, Ciudad de Buenos Aires, 1425, Argentina
Palabras clave:coordination polymer; fuel cell; metal organic framework; non-noble catalyst; Platinum-free; polymer electrolyte membrane; Catalysts; Cobalt; Cobalt compounds; Coordination reactions; Crystalline materials; Doping (additives); Electrolytes; Electrolytic reduction; Fuel cells; Methanol; Nitrogen; Organic polymers; Organometallics; Platinum; Polymers; Proton exchange membrane fuel cells (PEMFC); Coordination Polymers; Electrokinetic parameters; Exchange current densities; Metal organic framework; Metalorganic frameworks (MOFs); Nitrogen-doped mesoporous carbons; Oxygen reduction reaction; Polymer electrolyte membranes; Polyelectrolytes
Año:2017
Volumen:251
Página de inicio:638
Página de fin:650
DOI: http://dx.doi.org/10.1016/j.electacta.2017.08.055
Título revista:Electrochimica Acta
Título revista abreviado:Electrochim Acta
ISSN:00134686
CODEN:ELCAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134686_v251_n_p638_DiazDuran

Referencias:

  • Sørensen, B., Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning (2010), 4th Edition Academic Press Elsevier Amsterdam; Wilkinson, D.P., Zhang, J., Hui, R., Fergus, J., Li, X., Proton Exchange Membrane Fuel Cells Materials Properties and Performance (2010), CRC Press Taylor & Francis Group; Shao, M., Lecture Notes in Energy 9: Electrocatalysis in Fuel Cells A Non- and Low- Platinum Approach (2013), Springer-Verlag London; Zagal, J.H., Bedioui, F., Electrochemistry of N4 Macrocyclic Metal Complexes (2016), Second ed. Springer International Publishing Group Switzerland; Wiggins-Camacho, J.D., Stevenson, K.J., Mechanistic Discussion of the Oxygen Reduction Reaction at Nitrogen-Doped Carbon Nanotubes (2011) J. Phys. Chem. C, 115, pp. 20002-20010
  • Li, J., Ghoshal, S., Liang, W., Sougrati, M.-T., Jaouen, F., Halevi, B., McKinney, S., Jia, Q., Structural and Mechanistic Basis for the High Activity of Fe-N-C Catalysts Toward Oxygen Reduction (2016) Energy Environ. Sci., 9, pp. 2418-2432
  • Artyushkova, K., Serov, A., Rojas-Carbonell, S., Atanassov, P., Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal–Nitrogen–Carbon Electrocatalysts (2015) J. Phys. Chem. C, 119, pp. 25917-25928
  • Kramm, U.I., Lefèvre, M., Larouche, N., Schmeisser, D., Dodelet, J.-P., Correlations between Mass Activity and Physicochemical Properties of Fe/N/C Catalysts for the ORR in PEM Fuel Cell via 57Fe Mössbauer Spectroscopy and Other Techniques (2014) J. Am. Chem. Soc., 136, pp. 978-985
  • Zitolo, A., Goellner, V., Armel, V., Sougrati, M.-T., Mineva, T., Stievano, L., Fonda, E., Jaouen, F., Identification of the Catalytic Sites of Oxygen Reduction in Iron-Doped Graphene Materials (2015) Nat. Mat., 14, pp. 937-942
  • Jia, Q., Ramaswamy, N., Tylus, U., Strickland, K., Li, J., Serov, A., Artyushkova, K., Mukerjee, S., Spectroscopic Insights into the Nature of Active Sites in Iron–Nitrogen–Carbon Electrocatalysts for Oxygen Reduction in Acid (2016) Nano Energy, 29, pp. 65-82
  • Strickland, K., Miner, E., Jia, Q., Tylus, U., Ramaswamy, N., Liang, W., Sougrati, M.-T., Mukerjee, S., Highly Active Oxygen Reduction Non-Platinum Group Metal Electrocatalyst without Direct Metal–Nitrogen Coordination (2015) Nat. Commun., 6, p. 7343
  • Zhang, H., Osgood, H., Xie, X., Shao, Y., Wu, G., Engineering Nanostructures of PGM-Free Oxygen-Reduction Catalysts Using Metal-Organic Frameworks (2017) Nano Energy, 31, pp. 331-350
  • Batten, S.R., Champness, N.R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Reedijk, J., Terminology of metal-organic frameworks and coordination polymers (IUPACrecomendations 2013) (2013) Pure Applied Chemistry, 85, pp. 1715-1724
  • MacGillivray, L.R., Metal Organic Framework Materials (2014), John Wiley & Sons Ltd Chichester, UK; Farrusseng, D., Metal-Organic Frameworks Applications from Catalysis to Gas Storage (2011), Wiley-VCH Verlag & Co Weinheim, Germany; Falcaro, P., Ricco, R., Doherty, C.M., Liang, K., Hill, A.J., Styles, M.J., MOF Positioning Technology and Device Fabrication (2014) ‎Chem. Soc. Rev., 43, pp. 5513-5560
  • Li, S.-L., Xu, Q., Metal-Organic Frameworks as Platforms for Clean Energy (2013) Energy Environ. Sci., 6, pp. 1656-1683
  • Mahmood, A., Guo, W., Tabassum, H., Zou, R., Metal-Organic Framework-Based Nanomaterials for Electrocatalysis (2016) Adv. Energy Mater., 6. , 1600423-n/a
  • Song, M.J., Kim, I.T., Kim, Y.B., Kim, J., Shin, M.W., Metal–organic frameworks-derived porous carbon/Co3O4 composites for rechargeable lithium–oxygen batteries (2017) Electrochim. Acta, 230, pp. 73-80
  • Wei, J., Hu, Y., Liang, Y., Kong, B., Zheng, Z., Zhang, J., Jiang, S.P., Wang, H., Graphene oxide/core-shell structured metal-organic framework nano-sandwiches and their derived cobalt/N-doped carbon nanosheets for oxygen reduction reactions (2017) ‎J. Mater. Chem. A, 5, pp. 10182-10189
  • Xia, W., Zhu, J., Guo, W., An, L., Xia, D., Zou, R., Well-Defined Carbon Polyhedrons Prepared From Nano Metal-Organic Frameworks for Oxygen Reduction (2014) ‎J. Mater. Chem. A, 2, pp. 11606-11613
  • Wang, X., Zhou, J., Fu, H., Li, W., Fan, X., Xin, G., Zheng, J., Li, X., MOF Derived Catalysts for Electrochemical Oxygen Reduction (2014) ‎J. Mater. Chem. A, 2, pp. 14064-14070
  • Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., Keeffe, M., Yaghi, O.M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture (2008) Science, 319, pp. 939-943
  • Liu, Y.-H., Tsai, H.-L., Lu, Y.-L., Wen, Y.-S., Wang, J.-C., Lu, K.-L., Assembly of a Robust, Thermally Stable Porous Cobalt(II) Nicotinate Framework Based on a Dicobalt Carboxylate Unit (2001) Inorg. Chem., 40, pp. 6426-6431
  • O'Connor, C.J., Sinn, E., Crystal Structures and Magnetic Properties of Cobalt(II) Pyrazinecarboxylate and Pyrazinedicarboxylate Complexes (1981) Inorg. Chem., 20, pp. 545-551
  • Mao, L., Rettig, S.J., Thompson, R.C., Trotter, J., Xia, S., 2, 3-Pyrazinedicarboxylates of Cobalt(II), Nickel(II), and Copper(II); Magnetic Properties and Crystal Structures, ‎Can (1996) J. Chem., 74, pp. 433-444
  • Schareina, T., Schick, C., Abrahams, B.F., Kempe, R., Coordination Polymers of Bipyridyldicarboxylates −a Cobalt Containing 12,3-net with Potential Reactive Sites, ‎Z (2001) Anorg. Allg. Chem., 627, pp. 1711-1713
  • Franceschini, E.A., Bruno, M.M., Viva, F.A., Williams, F.J., Jobbágy, M., Corti, H.R., Mesoporous Pt electrocatalyst for Methanol Tolerant Cathodes of DMFC (2012) Electrochim. Acta, 71, pp. 173-180
  • Shen, K., Chen, X., Chen, J., Li, Y., Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis (2016) ACS Catalysis, 6, pp. 5887-5903
  • Tang, J., Salunkhe, R.R., Zhang, H., Malgras, V., Ahamad, T., Alshehri, S.M., Kobayashi, N., Yamauchi, Y., Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons (2016) ‎Sci. Rep, 6, p. 30295
  • Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Cancado, L.G., Jorio, A., Saito, R., Studying Disorder in Graphite-Based Systems by Raman Spectroscopy (2007) ‎Phys. Chem. Chem. Phys., 9, pp. 1276-1290
  • Xia, B.Y., Yan, Y., Li, N., Wu, H.B., Lou, X.W., Wang, X., A Metal–Organic Framework-Derived Bifunctional Oxygen Electrocatalyst (2016) Nat. Energy, 1, p. 15006
  • Choi, H.C., Jung, Y.M., Noda, I., Kim, S.B., A Study of the Mechanism of the Electrochemical Reaction of Lithium with CoO by Two-Dimensional Soft X-ray Absorption Spectroscopy (2D XAS), 2D Raman, and 2D Heterospectral XAS-Raman Correlation Analysis (2003) J. Phys. Chem. B, 107, pp. 5806-5811
  • Roncaroli, F., Dal Molin, E.S., Viva, F.A., Bruno, M.M., Halac, E.B., Cobalt and Iron Complexes with N-heterocyclic Ligands as Pyrolysis Precursors for Oxygen Reduction Catalysts (2015) Electrochim. Acta, 174, pp. 66-77
  • Mahmood, N., Zhang, C., Yin, H., Hou, Y., Graphene-Based Nanocomposites for Energy Storage and Conversion in Lithium Batteries Supercapacitors and Fuel Cells (2014) ‎J. Mater. Chem. A, 2, pp. 15-32
  • Niu, K., Yang, B., Cui, J., Jin, J., Fu, X., Zhao, Q., Zhang, J., Graphene-Based Non-Noble-Metal Co/N/C Catalyst for Oxygen Reduction Reaction in Alkaline Solution (2013) J. Power Sources, 243, pp. 65-71
  • Zhang, T., He, C., Sun, F., Ding, Y., Wang, M., Peng, L., Wang, J., Lin, Y., Co3O4 nanoparticles anchored on nitrogen-doped reduced graphene oxide as a multifunctional catalyst for H2O2 reduction, oxygen reduction and evolution reaction (2017) ‎Sci. Rep, 7, p. 43638
  • Wang, H., Yin, F.-X., Chen, B.-H., He, X.-B., Lv, P.-L., Ye, C.-Y., Liu, D.-J., ZIF-67 Incorporated with Carbon Derived from Pomelo Peels: A Highly Efficient Bifunctional Catalyst for Oxygen Reduction/Evolution Reactions (2017) Appl. Catal. B, 205, pp. 55-67
  • Shi, R., Chen, G., Ma, W., Zhang, D., Qiu, G., Liu, X., Shape-Controlled Synthesis and Characterization of Cobalt Oxides Hollow Spheres and Octahedra (2012) Dalton Trans., 41, pp. 5981-5987
  • Barreca, D., Gasparotto, A., Lebedev, O.I., Maccato, C., Pozza, A., Tondello, E., Turner, S., Van Tendeloo, G., Controlled Vapor-Phase Synthesis of Cobalt Oxide Nanomaterials with Tuned Composition and Spatial Organization (2010) CrystEngComm, 12, pp. 2185-2197
  • Onbaşlı, M.C., Goto, T., Tang, A., Pan, A., Battal, E., Okyay, A.K., Dionne, G.F., Ross, C.A., Oxygen Partial Pressure Dependence of Magnetic, Optical and Magneto-Optical Properties of Epitaxial Cobalt-Substituted SrTiO3 Films (2015) Opt. Express, 23, pp. 13399-13409
  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquroi, J., Siemineieweka, T., (1988) Pure Applied Chemistry, 57, pp. 603-619
  • Jaouen, F., Dodelet, J.-P., O2 Reduction Mechanism on Non-Noble Metal Catalysts for PEM Fuel Cells. Part I: Experimental Rates of O2 Electroreduction, H2O2 Electroreduction, and H2O2 Disproportionation (2009) J. Phys. Chem. C, 113, pp. 15422-15432
  • Jaouen, F., Lefèvre, M., Dodelet, J.-P., Cai, M., Heat-Treated Fe/N/C Catalysts for O2 Electroreduction:  Are Active Sites Hosted in Micropores? (2006) J. Phys. Chem. B, 110, pp. 5553-5558
  • Lefèvre, M., Proietti, E., Jaouen, F., Dodelet, J.-P., Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells (2009) Science, 324, p. 71
  • Ferrero, G.A., Preuss, K., Fuertes, A.B., Sevilla, M., Titirici, M.M., The Influence of Pore Size Distribution on the Oxygen Reduction Reaction Performance in Nitrogen Doped Carbon Microspheres (2016) ‎J. Mater. Chem. A, 4, pp. 2581-2589
  • Liang, H.-W., Wei, W., Wu, Z.-S., Feng, X., Müllen, K., Mesoporous Metal–Nitrogen-Doped Carbon Electrocatalysts for Highly Efficient Oxygen Reduction Reaction (2013) J. Am. Chem. Soc., 135, pp. 16002-16005
  • Morozan, A., Sougrati, M.T., Goellner, V., Jones, D., Stievano, L., Jaouen, F., Effect of Furfuryl Alcohol on Metal Organic Framework-based Fe/N/C Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells (2014) Electrochim. Acta, 119, pp. 192-205
  • Barkholtz, H.M., Liu, D.-J., Advancements in Rationally Designed PGM-Free Fuel Cell Catalysts Derived from Metal-Organic Frameworks (2017) Mater Horiz., 4, pp. 20-37
  • He, C., Zhang, T., Sun, F., Li, C., Lin, Y., Fe/N co-doped mesoporous carbon nanomaterial as an efficient electrocatalyst for oxygen reduction reaction (2017) Electrochim. Acta, 231, pp. 549-556
  • Zhao, D., Shui, J.-L., Chen, C., Chen, X., Reprogle, B.M., Wang, D., Liu, D.-J., Iron Imidazolate Framework as Precursor for Electrocatalysts in Polymer Electrolyte Membrane Fuel Cells (2012) Chem. Sci., 3, pp. 3200-3205
  • Yin, P., Yao, T., Wu, Y., Zheng, L., Lin, Y., Liu, W., Ju, H., Li, Y., Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts (2016) Angew. Chem. Int. Ed., 55, pp. 10800-10805
  • Chong, L., Goenaga, G.A., Williams, K., Barkholtz, H.M., Grabstanowicz, L.R., Brooksbank, J.A., Papandrew, A.B., Liu, D.-J., Investigation of Oxygen Reduction Activity of Catalysts Derived from Co and Co/Zn Methyl-Imidazolate Frameworks in Proton Exchange Membrane Fuel Cells (2016) ChemElectroChem, 3, pp. 1541-1545
  • Hu, Z., Zhang, Z., Li, Z., Dou, M., Wang, F., One-Step Conversion from Core–Shell Metal–Organic Framework Materials to Cobalt and Nitrogen Codoped Carbon Nanopolyhedra with Hierarchically Porous Structure for Highly Efficient Oxygen Reduction (2017) ACS Appl. Mater. Interfaces, 9, pp. 16109-16116
  • Deng, Y., Dong, Y., Wang, G., Sun, X., Zheng, L., Li, X., Liao, S., Well-Defined ZIF-Derived Fe–N Codoped Carbon Nanoframes as Efficient Oxygen Reduction Catalysts (2017) ACS Appl. Mater. Interfaces, 9, pp. 9699-9709
  • Wang, X., Zhang, H., Lin, H., Gupta, S., Wang, C., Tao, Z., Fu, H., Li, X., Directly Converting Fe-Doped Metal–Organic Frameworks into Highly Active and Stable Fe-N-C Catalysts for Oxygen Reduction in Acid (2016) Nano Energy, 25, pp. 110-119

Citas:

---------- APA ----------
Díaz-Duran, A.K. & Roncaroli, F. (2017) . MOF derived Mesoporous Nitrogen doped Carbons with high Activity towards Oxygen Reduction. Electrochimica Acta, 251, 638-650.
http://dx.doi.org/10.1016/j.electacta.2017.08.055
---------- CHICAGO ----------
Díaz-Duran, A.K., Roncaroli, F. "MOF derived Mesoporous Nitrogen doped Carbons with high Activity towards Oxygen Reduction" . Electrochimica Acta 251 (2017) : 638-650.
http://dx.doi.org/10.1016/j.electacta.2017.08.055
---------- MLA ----------
Díaz-Duran, A.K., Roncaroli, F. "MOF derived Mesoporous Nitrogen doped Carbons with high Activity towards Oxygen Reduction" . Electrochimica Acta, vol. 251, 2017, pp. 638-650.
http://dx.doi.org/10.1016/j.electacta.2017.08.055
---------- VANCOUVER ----------
Díaz-Duran, A.K., Roncaroli, F. MOF derived Mesoporous Nitrogen doped Carbons with high Activity towards Oxygen Reduction. Electrochim Acta. 2017;251:638-650.
http://dx.doi.org/10.1016/j.electacta.2017.08.055