Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

One of the challenges for the success of electric vehicles is to achieve a non aqueous Li-O2 battery efficient in the oxidation of solid Li2O2 during battery charging. Bruce et al. have proposed that soluble tetrathiofulvalene (TTF) in the electrolyte, makes it possible to recharge the battery at high current densities and low over-potential. We disclose here a detailed study of Li2O2 and solvent degradation products oxidation on gold electrode in 0.1 M LiPF6 DMSO electrolyte with soluble TTF using a variety of techniques: rotating ring disk electrode (RRDE), scanning electrochemical microscopy (SECM), electrochemical quartz crystal microbalance (EQCM) and atomic force microscopy (AFM). The experimental evidence demonstrates that it is possible recover a clean Au surface using TTF as a soluble catalyst that titrates the surface products formed during the O2 reduction. © 2015 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Soluble TTF catalyst for the oxidation of cathode products in Li-Oxygen battery: A chemical scavenger
Autor:Torres, W.R.; Herrera, S.E.; Tesio, A.Y.; Pozo, M.D.; Calvo, E.J.
Filiación:INQUIMAE Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Pabellon 2, Ciudad Universitaria, Buenos Aires, AR-1428, Argentina
Palabras clave:lithium air batteries; ORR, redox titration; soluble catalyst; tetrathiafulvalene; Atomic force microscopy; Catalysts; Degradation; Electric batteries; Electrochemical electrodes; Electrodes; Electrolytes; Lithium; Oxidation; Quartz crystal microbalances; Scanning electron microscopy; Scanning probe microscopy; Secondary batteries; Electrochemical quartz crystal microbalance; High current densities; Lithium-air battery; Redox titrations; Rotating ring-disk electrode; Scanning electrochemical microscopy; Soluble catalysts; Tetrathiafulvalenes; Lithium batteries
Año:2015
Volumen:182
Página de inicio:1118
Página de fin:1123
DOI: http://dx.doi.org/10.1016/j.electacta.2015.09.130
Título revista:Electrochimica Acta
Título revista abreviado:Electrochim Acta
ISSN:00134686
CODEN:ELCAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134686_v182_n_p1118_Torres

Referencias:

  • Abraham, K.M., Jiang, Z., A polymer electrolyte-based rechargeable lithium/oxygen battery (1996) Journal of the Electrochemical Society, 143, pp. 1-5
  • Bruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.M., LigO2 and LigS batteries with high energy storage (2011) Nature Materials, 11, pp. 19-29
  • Christensen, J., Albertus, P., Sanchez-Carrera, R.S., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J., Kojic, A., A critical review of Li/air batteries (2012) Journal of the Electrochemical Society, 159, pp. R1-R30
  • Hardwick, L.J., Bruce, P.G., The pursuit of rechargeable non-aqueous lithium-oxygen battery cathodes (2012) Current Opinion in Solid State and Materials Science, 16, pp. 178-185
  • Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery (2010) Journal of Physical Chemistry C, 114, pp. 9178-9186
  • McCloskey, B.D., Speidel, A., Scheffler, R., Miller, D.C., Viswanathan, V., Hummelshãj, J.S., Nãrskov, J.K., Luntz, A.C., Twin problems of interfacial carbonate formation in nonaqueous Li-O 2 batteries (2012) Journal of Physical Chemistry Letters, 3, pp. 997-1001
  • Trahan, M.J., Jia, Q., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., Cobalt phthalocyanine catalyzed lithium-air batteries (2013) Journal of the Electrochemical Society, 160, pp. A1577-A1586
  • Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., Elucidating the mechanism of oxygen reduction for lithium-air battery applications (2009) Journal of Physical Chemistry C, 113, pp. 20127-20134
  • Ottakam Thotiyl, M.M., Freunberger, S.A., Peng, Z., Chen, Y., Liu, Z., Bruce, P.G., A stable cathode for the aprotic Li-O2 battery (2013) Nature Materials, 12, pp. 1050-1056
  • Xu, D., Wang, Z.L., Xu, J.J., Zhang, L.L., Zhang, X.B., Novel DMSO-based electrolyte for high performance rechargeable Li-O 2 batteries (2012) Chemical Communications, 48, pp. 6948-6950
  • Chen, Y., Freunberger, S.A., Peng, Z., Barde, F., Bruce, P.G., Li-O-2 Battery with a Dimethylformamide Electrolyte (2012) Journal of the American Chemical Society, 134, pp. 7952-7957
  • Gallant, B.M., Kwabi, D.G., Mitchell, R.R., Zhou, J., Thompson, C.V., Shao-Horn, Y., Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries (2013) Energy and Environmental Science, 6, pp. 2518-2528
  • McCloskey, B.D., Valery, A., Luntz, A.C., Gowda, S.R., Wallraff, G.M., Garcia, J.M., Mori, T., Krupp, L.E., Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O 2 Batteries (2013) Journal of Physical Chemistry Letters, 4, pp. 2989-2993
  • Sharon, D., Afri, M., Noked, M., Garsuch, A., Frimer, A.A., Aurbach, D., Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen (2013) Journal of Physical Chemistry Letters, 4, pp. 3115-3119
  • Mozhuzhukina, N., Mendez De Leo, L.P., Calvo, E.J., Infrared Spectroscopy Studies on Stability of Dimethyl Sulfoxide for Application in a Li-Air Battery (2013) Journal of Physical Chemistry C, 117, pp. 18375-18380
  • Chen, Y., Freunberger, S.A., Peng, Z., Fontaine, O., Bruce, P.G., Charging a Li-O2 battery using a redox mediator (2013) Nature Chemistry, 5, pp. 489-494
  • Schaltin, S., Vanhoutte, G., Wu, M., Bardé, F., Fransaer, J., A QCM study of ORR-OER and an in situ study of a redox mediator in DMSO for Li-O2 batteries (2015) Physical Chemistry Chemical Physics, 17, pp. 12575-12586
  • Lacey, M.J., Frith, J.T., Owen, J.R., A redox shuttle to facilitate oxygen reduction in the lithium air battery (2013) Electrochemistry Communications, 26, pp. 74-76
  • Lodge, A.W., Lacey, M.J., Fitt, M., Garcia-Araez, N., Owen, J.R., Critical appraisal on the role of catalysts for the oxygen reduction reaction in lithium-oxygen batteries (2014) Electrochimica Acta, 140, pp. 168-173
  • Yang, L., Frith, J.T., Garcia-Araez, N., Owen, J.R., A new method to prevent degradation of lithium-oxygen batteries: Reduction of superoxide by viologen (2015) Chemical Communications, 51, pp. 1705-1708
  • Lim, H.-D., Song, H., Kim, J., Gwon, H., Bae, Y., Park, K.-Y., Hong, J., Kang, K., Superior Rechargeability and Efficiency of Lithium-Oxygen Batteries: Hierarchical Air Electrode Architecture Combined with a Soluble Catalyst (2014) Angewandte Chemie-International Edition, 53, pp. 3926-3931
  • Zhu, Y.G., Jia, C., Yang, J., Pan, F., Huang, Q., Wang, Q., Dual redox catalysts for oxygen reduction and evolution reactions: Towards a redox flow Li-O2 battery (2015) Chemical Communications, 51, pp. 9451-9454
  • Sun, D., Shen, Y., Zhang, W., Yu, L., Yi, Z., Yin, W., Wang, D., Goodenough, J.B., A solution-phase bifunctional catalyst for lithium-oxygen batteries (2014) Journal of the American Chemical Society, 136, pp. 8941-8946
  • Abraham, K.M., (2013) Lithium Batteries: Advanced Technologies and Applications, , First ed. John Wiley and Sons, Inc
  • Tarascon, J.M., Guyomard, D., Li metal-free rechargeable batteries based on Li1+xMn2O4 cathodes (0 < x < 1) and carbon anodes (1991) Journal of the Electrochemical Society, 138, pp. 2864-2868
  • Albery, W.J., Hitchman, M.L., Current distribution on a rotating disc electrode (1971) Transactions of the Faraday Society, 67, pp. 2408-2413
  • Laoire, C.O., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., Rechargeable lithium/TEGDME-LiPF6/O2 battery (2011) Journal of the Electrochemical Society, 158, pp. A302-A308
  • Marchini, F., Herrera, S.E., Torres, W.R., Tesio, A.Y., Williams, F.J., Calvo, E.J., (2015) Langmuir, 31 (33), pp. 9236-9245
  • Herrera, S.E., Tesio, A.Y., Clarenc, R., Calvo, E.J., AFM study of oxygen reduction products on HOPG in the LiPF6-DMSO electrolyte (2014) Physical Chemistry Chemical Physics, 16, pp. 9925-9929

Citas:

---------- APA ----------
Torres, W.R., Herrera, S.E., Tesio, A.Y., Pozo, M.D. & Calvo, E.J. (2015) . Soluble TTF catalyst for the oxidation of cathode products in Li-Oxygen battery: A chemical scavenger. Electrochimica Acta, 182, 1118-1123.
http://dx.doi.org/10.1016/j.electacta.2015.09.130
---------- CHICAGO ----------
Torres, W.R., Herrera, S.E., Tesio, A.Y., Pozo, M.D., Calvo, E.J. "Soluble TTF catalyst for the oxidation of cathode products in Li-Oxygen battery: A chemical scavenger" . Electrochimica Acta 182 (2015) : 1118-1123.
http://dx.doi.org/10.1016/j.electacta.2015.09.130
---------- MLA ----------
Torres, W.R., Herrera, S.E., Tesio, A.Y., Pozo, M.D., Calvo, E.J. "Soluble TTF catalyst for the oxidation of cathode products in Li-Oxygen battery: A chemical scavenger" . Electrochimica Acta, vol. 182, 2015, pp. 1118-1123.
http://dx.doi.org/10.1016/j.electacta.2015.09.130
---------- VANCOUVER ----------
Torres, W.R., Herrera, S.E., Tesio, A.Y., Pozo, M.D., Calvo, E.J. Soluble TTF catalyst for the oxidation of cathode products in Li-Oxygen battery: A chemical scavenger. Electrochim Acta. 2015;182:1118-1123.
http://dx.doi.org/10.1016/j.electacta.2015.09.130