Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cobalt and Iron based catalysts for the Oxygen Reduction Reaction (ORR) are a promising alternative to the use of Pt in Polymer Electrolyte Fuel Cells (PEMFC). A systematic study on the influence of the nitrogenated ligand in the precursor complex on the ORR activity was performed. Several Fe and Co complexes were prepared with different N-heterocyclic ligands, namely: meso-tetra-(4-carboxyphenyl)-porphyrin (TCPP), N-methylimidazole (N-Me-Im), 3-amino-1,2,4-triazole-5-carboxylic acid (ATZC), 2,20-bis(4,5-dimethylimidazole) (bis-Me-Im), phenanthroline (phen), 2-pyrazinecarboxylic acid (CO2-Pz), 3,6-di-2-pyridyl-1,2,4,5-tetrazine (DPTZ) and 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), adsorbed on a carbon substrate and submitted to thermal treatment. These ligands comprise five and six membered rings with one to four N-atoms. Key parameters such as the pyrolysis temperature, the complex load and the metal: ligand ratio were studied, in order to optimize the efficiency of the catalysts. The synthesized catalysts were characterized by several physical bulk and surface techniques, namely XRD, TGA, Raman spectroscopy, XPS, EDX and electron microscopies (SEM and TEM). The best catalyst was obtained from a Cobalt-phenanthroline precursor, adsorbed on a mesoporous carbon material, and pyrolyzed at 700 °C. The equilibrium potential was 0.90 V vs NHE (1.0 V for Pt), exchange current density 25μAcm2, Tafel slope was 90mVdec1, and 4.0 exchanged electrons, less than 9 % in H2O2 yield, and half wave potential only 80 mV lower than that of Platinum (10%). This catalyst exhibited the highest N content as determined by XPS. The electrochemical data of the prepared catalysts were analyzed in the context of the TGA, XRD and XPS information. A correlation between ORR activity and the N content (XPS) was found. This result strongly supports the model that proposes N atoms as the active sites, and provides a rational tool for designing new catalysts. © 2015 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Cobalt and iron complexes with N-heterocyclic ligands as pyrolysis precursors for oxygen reduction catalysts
Autor:Roncaroli, F.; Dal Molin, E.S.; Viva, F.A.; Bruno, M.M.; Halac, E.B.
Filiación:Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, San Martin, Buenos Aires, 1650, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires, 1428, Argentina
Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martin, Martin de Irigoyen 3100, San Martín, Buenos Aires, 1650, Argentina
Palabras clave:Fuel Cell; Non-noble catalyst; ORR; Platinum-free; Polymer electrolyte membrane; Carbon; Catalyst activity; Catalysts; Cobalt; Cobalt compounds; Copolymers; Electrolytic reduction; Fuel cells; Iron compounds; Ligands; Organic compounds; Platinum; Polyelectrolytes; Proton exchange membrane fuel cells (PEMFC); Pyrolysis; Reduction; X ray photoelectron spectroscopy; 2 ,4 ,6 Tri(2 pyridyl) s triazines; Exchange current densities; Mesoporous carbon materials; ORR; Oxygen reduction catalysts; Polymer electrolyte fuel cells; Polymer electrolyte membranes; Tetra (4 carboxyphenyl)porphyrin; Solid electrolytes
Año:2015
Volumen:174
Número:1
Página de inicio:66
Página de fin:77
DOI: http://dx.doi.org/10.1016/j.electacta.2015.05.136
Título revista:Electrochimica Acta
Título revista abreviado:Electrochim Acta
ISSN:00134686
CODEN:ELCAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134686_v174_n1_p66_Roncaroli

Referencias:

  • Service, R.F., Hydrogen Cars: Fad or the Future? (2009) Science, 324, p. 1257
  • Schlapbach, L., Technology: Hydrogen-fuelled vehicles (2009) Nature, 460, p. 809
  • Tollefson, J., Hydrogen vehicles: Fuel of the future? (2010) Nature, 464, p. 1262
  • Hoogers, G., (2003) Fuel Cell Technology Handbook, , CRC Press, Boca Raton
  • Wilkinson, R., Fergus, Li, X., (2010) Proton Exchange Membrane Fuel Cells: Materials Properties and Performance, , CRC, Press, Boca Raton
  • Gasteiger, H.A., Kocha, S.S., Sompalli, B., Wagner, F.T., Activity benchmarks and requirements for Pt Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs (2005) App. Cat. B, 56, p. 9
  • Wagner, F.T., Lakshmanan, B., Mathias, M.F., Electrochemistry and the Future of the Automobile (2010) J. Phys. Chem. Lett, 1, p. 2204
  • Bashyam, R., Zelenay, P., A class of non-precious metal composite catalysts for fuel cells (2006) Nature, 443, p. 63
  • Alayoglu, S., Nilekar, A.U., Mavrikakis, M., Eichhorn, B., Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen (2008) Nat. Mater, 7, p. 333
  • Zhang, X., Filho, L.P., Torras, C., Garcia-Valls, R., Experimental and computational study of proton and methanol permeabilities through composite membranes (2005) J. Power Sources, 145, p. 223
  • Masa, J., Ozoemena, K., Schuhmann, W., Zagal, J.H., Oxygen reduction reaction using N4-metallomacrocyclic catalysts: Fundamentals on rational catalyst design (2012) J. Porphyrins & Phthalocyanines, 16, pp. 761-784
  • Bezerra, C.W.B., Zhang, L., Lee, K., Liu, H., Marques, A.L.B., Marques, E.P., Wang, H., Zhang, J., A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction (2008) Electrochim. Acta, 53, p. 4937
  • Morozan, A., Jousselme, B., Palacin, S., Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes (2011) Energy & Environmental Sci, 4, p. 1238
  • Jasinski, R., A New Fuel Cell Cathode Catalyst (1964) Nature, 201, p. 1212
  • Jahnke, M., Schonborn, H., Schonborn, G., Zimmermann, M., Zimmermann, G., Organic dyestuffs as catalysts for fuel cells (1976) Top. Curr. Chem, 61, p. 133
  • Dodelet, J.-P., Oxygen reduction in PEM fuel cell conditions: Heat-treated non-precious metal-N4 macrocycles and beyond (2006) N4-macrocyclic Metal Complexes, p. 83. , F. B. J. H. Zagal, J. P. Dodelet Eds., Springer-Verlag, New York
  • Garsuch, A.B.A., Liu, G., Yang, R., Dahn, J.R., Time to move beyond transition metal-N-C catalysts for oxygen reduction (2009) Handbook of Fuel Cells - Fundamentals, Technology and Applications, p. 71. , A. L. W. Vielstich, H. A. Gasteiger Eds., Wiley, Chichester, UK
  • Johnston, P.P.C.M., Zelenay, P., Transition metal/polymer catalysts for O2 reduction (2009) Handbook of Fuel Cells - Fundamentals, Technology and Applications, p. 48. , A. L. W. Vielstich, H. A. Gasteiger Eds., Wiley, Chichester, UK
  • Zhou, X., Qiao, J., Yang, L., Zhang, J., A review of graphene-based nanostructural materials for both catalyst supports and metal-free catalysts in PEM fuel cell oxygen reduction reactions (2014) Adv. Energy Mat., 4, p. 1301523
  • He, W., Jiang, C., Wang, J., Lu, L., High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons (2014) Angew. Chem. Int. Ed., 53, p. 9503
  • Jiao, Y., Zheng, Y., Jaroniec, M., Qiao, S.Z., Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance (2014) J. Am. Chem. Soc., 136, p. 4394
  • Dodelet, J.P., The controversial role of the metal in Fe- or Co-based electrocatalysts for the oxygen reduction reaction in acid medium (2013) Electrocatalysis in Fuel Cells, Lecture Notes in Energy, p. 271. , S. Minhua Ed., Springer, London
  • Szakacs, C.E., Lefevre, M., Kramm, U.I., Dodelet, J.-P., Vidal, F., A density functional theory study of catalytic sites for oxygen reduction in Fe/N/C catalysts used in H2/O2 fuel cells (2014) Phys. Chem. Chem. Phys., 16, p. 13654
  • Kramm, U.I., Herranz, J., Larouche, N., Arruda, T.M., Lefevre, M., Jaouen, F., Bogdanoff, P., Dodelet, J.-P., Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells (2012) Phys. Chem. Chem. Phys., 14, p. 11673
  • Wu, G., More, K.L., Johnston, C.M., Zelenay, P., High-performance electrocatalysts for oxygen reduction derived from polyaniline (2011) Iron, and Cobalt, Science, 332, p. 443
  • Onodera, T., Suzuki, S., Mizukami, T., Kanzaki, H., Enhancement of oxygen reduction activity with addition of carbon support for non-precious metal nitrogen doped carbon catalyst (2011) J. Power Sources, 196, p. 7994
  • Silva, R., Voiry, D., Chhowalla, M., Asefa, T., Efficient metal-free electrocatalysts for oxygen reduction: Polyaniline-derived N- and O-doped mesoporous carbons (2013) J. Am. Chem. Soc., 135, p. 7823
  • Ganesan, S., Leonard, N., Barton, S.C., Impact of transition metal on nitrogen retention and activity of iron-nitrogen-carbon oxygen reduction catalysts (2014) Phys. Chem. Chem. Phys., 16, p. 4576
  • Tian, J., Morozan, A., Sougrati, M.T., Lefèvre, M., Chenitz, R., Dodelet, J.-P., Jones, D., Jaouen, F., Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: A matter of iron-ligand coordination strength (2013) Angew. Chem. Int. Ed., 52, p. 6867
  • Li, J.-S., Li, S.-L., Tang, Y.-J., Li, K., Zhou, L., Kong, N., Lan, Y.-Q., Dai, Z.-H., Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction (2014) Scientific Reports, 4, p. 5130
  • Ren, Y., Chia, G.H., Gao, Z., Metal-organic frameworks in fuel cell technologies (2013) Nano Today, 8, p. 577
  • Bruno, M.M., Corti, H.R., Balach, J., Cotella, N.G., Barbero, C.A., Hierarchical porous materials: Capillaries in nanoporous carbon (2009) Functional Mat. Lett., 2, p. 135
  • Li, S., Zhang, L., Kim, J., Pan, M., Shi, Z., Zhang, J., Synthesis of carbon-supported binary FeCo-N non-noble metal electrocatalysts for the oxygen reduction reaction (2010) Electrochim. Acta, 55, p. 7346
  • Goodgame, D.M.L., Goodgame, M., Rayner-Canham, G.W., Spectroscopic studies of substituted imidazole complexes. II. N-methylimidazole complexes of divalent cobalt, nickel, copper and zinc (1969) Inorg. Chimica Acta, 3, p. 406
  • Liang, Y.-C., Hong, M.-C., Liu, J.-C., Cao, R., Hydrothermal syntheses, structural characterizations and magnetic properties of cobalt (II) and manganese (II) coordination polymeric complexes containing pyrazinecarboxylate ligand (2002) Inorg. Chimica Acta, 328, p. 152
  • De Angelis Curtis, S., Kurdziel, K., Materazzi, S., Vecchio, S., Crystal structure and thermoanalytical study of cobalt (II) and nickel (II) complexes with 2, 2'-bis-(4, 5-dimethylimidazole) (2010) Thermochimica Acta, 510, p. 75
  • Westerhaus, F.A., Jagadeesh, R.V., Wienhöfer, G., Pohl, M.-M., Radnik, J., Surkus, A.-E., Rabeah, J., Beller, M., Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes (2013) Nat. Chem., 5, p. 537
  • Collins, H., Smith, 2, 4, 6-Tripyridyl-s-triazine as reagent for iron. Determination of iron in limestone, silicates, and refractories (1959) Analytical Chem., 31, p. 1862
  • Lee, T.S., Kolthoff, I.M., Leussing, D.L., Reaction of ferrous and ferric iron with 1, 10-phenanthroline. I. Dissociation constants of ferrous and ferric phenanthroline (1948) J. Am. Chem. Soc., 70, p. 2348
  • Tufts, B.J., Abrahams, I.L., Caley, C.E., Lunt, S.R., Miskelly, G.M., Sailor, M.J., Santangelo, P.G., Hodgson, K.O., XPS and EXAFS studies of the reactions of cobalt (III) ammine complexes with gallium arsenide surfaces (1990) J. Am. Chem. Soc., 112, p. 5123
  • Chen, X., Ren, H., Peng, W., Zhang, H., Lu, J., Zhuang, L., Highly efficient molecular cobalt electrode for (Photo) electrochemical Hydrogen Evolution (2014) J. Phys. Chem. C, 118, p. 20791
  • Franceschini, E.A., Bruno, M.M., Viva, F.A., Williams, F.J., Jobbágy, M., Corti, H.R., Mesoporous Pt electrocatalyst for methanol tolerant cathodes of DMFC (2012) Electrochim. Acta, 71, p. 173
  • Sha, H.-D., Yuan, X., Hu, X.-X., Lin, H., Wen, W., Ma, Z.-F., Effects of pyrrole polymerizing oxidant on the properties of pyrolysed carbon-supported cobalt-polypyrrole as electrocatalysts for oxygen reduction reaction (2013) J. Electrochem. Soc., 160, p. F507
  • Artyushkova, K., Levendosky, S., Atanassov, P., Fulghum, J., XPS structural studies of nano-composite non-platinum electrocatalysts for polymer electrolyte fuel cells (2007) Top. Catal., 46, p. 263
  • Barakat, N.A.M., Kim, B., Park, S.J., Jo, Y., Jung, M.-H., Kim, H.Y., Cobalt nanofibers encapsulatedina graphite shell byan electrospinning process (2009) J. Mat. Chem., 19, p. 7371
  • Choi, H.C., Jung, Y.M., Noda, I., Kim, S.B., A study of the mechanism of the electrochemical reaction of lithium with CoO by Two-dimensional Soft X-ray absorption spectroscopy (2D XAS), 2D Raman, and 2D heterospectral XAS-Raman correlation analysis (2003) J. Phys. Chem. B, 107, p. 5806
  • Niu, K., Yang, B., Cui, J., Jin, J., Fu, X., Zhao, Q., Zhang, J., Graphene-based non-noblemetal Co/N/C catalyst for oxygen reduction reaction in alkaline solution (2013) J. Power Sources, 243, p. 65
  • Mahmood, N., Zhang, C., Yin, H., Hou, Y., Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells (2014) J. Mat. Chem. A, 2, p. 15
  • Zhang, H.-J., Li, H., Li, X., Qiu, H., Yuan, X., Zhao, B., Ma, Z.-F., Yang, J., Pyrolyzing cobalt diethylenetriamine chelate on carbon (CoDETA/C) as a family of nonprecious metal oxygen reduction catalyst (2014) Int. J. Hydrogen Energy, 39, p. 267
  • Subramanian, N.P., Kumaraguru, S.P., Colon-Mercado, H., Kim, H., Popov, B.N., Black, T., Chen, D.A., Studies on Co-based catalysts supported on modified carbon substrates for PEMFC cathodes (2006) J. Power Sources, 157, p. 56
  • Qiao, J., Xu, L., Ding, L., Zhang, L., Baker, R., Dai, X., Zhang, J., Using pyridine as nitrogen-rich precursor to synthesize Co-N-S/C non-noble metal electrocatalysts for oxygen reduction reaction (2012) App. Cat. B, 125, p. 197
  • Cui, J., Huang, L., Lu, Z., Li, Y., Guo, Z., Zheng, H., Synthesis and properties of five unexpected copper complexes with ring-cleavage of 3, 6-di-2-pyridyl-1, 2, 4, 5-tetrazine byone potin situhydrothermal reaction (2012) Cryst. Eng. Comm., 14, p. 2258
  • Yang, P., Chen, S., Liu, Y., Xiao, Z., Ding, L., A pyridine-functionalized pyrazolinofullerene used as a buffer layer in polymer solar cells (2013) Phys. Chem. Chem. Phys., 15, p. 17076

Citas:

---------- APA ----------
Roncaroli, F., Dal Molin, E.S., Viva, F.A., Bruno, M.M. & Halac, E.B. (2015) . Cobalt and iron complexes with N-heterocyclic ligands as pyrolysis precursors for oxygen reduction catalysts. Electrochimica Acta, 174(1), 66-77.
http://dx.doi.org/10.1016/j.electacta.2015.05.136
---------- CHICAGO ----------
Roncaroli, F., Dal Molin, E.S., Viva, F.A., Bruno, M.M., Halac, E.B. "Cobalt and iron complexes with N-heterocyclic ligands as pyrolysis precursors for oxygen reduction catalysts" . Electrochimica Acta 174, no. 1 (2015) : 66-77.
http://dx.doi.org/10.1016/j.electacta.2015.05.136
---------- MLA ----------
Roncaroli, F., Dal Molin, E.S., Viva, F.A., Bruno, M.M., Halac, E.B. "Cobalt and iron complexes with N-heterocyclic ligands as pyrolysis precursors for oxygen reduction catalysts" . Electrochimica Acta, vol. 174, no. 1, 2015, pp. 66-77.
http://dx.doi.org/10.1016/j.electacta.2015.05.136
---------- VANCOUVER ----------
Roncaroli, F., Dal Molin, E.S., Viva, F.A., Bruno, M.M., Halac, E.B. Cobalt and iron complexes with N-heterocyclic ligands as pyrolysis precursors for oxygen reduction catalysts. Electrochim Acta. 2015;174(1):66-77.
http://dx.doi.org/10.1016/j.electacta.2015.05.136