Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We have studied the electrocatalytic hydrogenation of acetophenone and benzophenone using a) potentiometric titration of adsorbed hydrogen by the organic reactant in excess, b) electrochemical impedance spectroscopy at a potential at the onset of hydrogen evolution and c) electrolysis at constant potential at high adsorbed hydrogen coverage. The rate of reactions between adsorbed hydrogen and adsorbed ketones and the respective alcohols intermediates of hydrogenation have been obtained from the titration curves at different organic reagent concentrations. Both the reaction rate and the charge transfer resistance, Rct, for the H+/Hads reaction follow a concentration dependence that can be interpreted by a Langmuir adsorption isotherm for the organic molecules and also a blockage of the palladium surface for the hydrogen adsorption. From the results of electrolysis at controlled potential under high hydrogen coverage, the faradaic yield and the product distribution, namely 1-phenylethanol, ethylbenzene, diphenylmethanol, diphenylmethane have been obtained. © 2015 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Electrocatalytic hydrogenation of acetophenone and benzophenone using palladium electrodes
Autor:Villalba, M.; Del Pozo, M.; Calvo, E.J.
Filiación:INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellon 2, Buenos Aires, AR-1428, Argentina
Palabras clave:Acetophenone; Benzophenone; Electrocatalysis; Hydrogenation; Palladium; Charge transfer; Electrocatalysis; Electrochemical impedance spectroscopy; Electrodes; Electrolysis; Hydrogen; Hydrogenation; Ketones; Palladium; Reaction intermediates; Titration; Voltammetry; Acetophenones; Benzophenone; Charge transfer resistance; Concentration dependence; Electrocatalytic hydrogenation; Langmuir adsorption isotherms; Potentiometric titrations; Product distributions; Gas adsorption
Año:2015
Volumen:164
Página de inicio:125
Página de fin:131
DOI: http://dx.doi.org/10.1016/j.electacta.2015.02.113
Título revista:Electrochimica Acta
Título revista abreviado:Electrochim Acta
ISSN:00134686
CODEN:ELCAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134686_v164_n_p125_Villalba

Referencias:

  • Mahdavi, B., Chapuzet, J.M., Lessard, J., The electrocatalytic hydrogenation of phenanthrene at Raney Nickel electrodes: The effect of periodic current control (1993) Electrochimica Acta, 38, pp. 1377-1380
  • Casadei, M.A., Pletcher, D., The influence of conditions molecules on the electrocatalytic hydrogenation of organic molecules (1988) Electrochimica Acta, 33, pp. 117-120
  • Pletcher, D., The mechanism of electrocatalytic hydrogenation of organic molecules at Palladium black cathodes (1993) Electrochimica Acta, 38, pp. 425-430
  • Park, K., Pintauro, P.N., Baizer, M.M., Nobe, K., Flow Reactor Studies of the Paired Electro-Oxidation and Electroreduction of Glucose (1985) Journal of the Electrochemical Society, pp. 1850-1855
  • Langer, S.H., Sakellaropoulos, G.P., Kinetics of electrogenerative hydrogenation over platinum black electrocatalyst (1975) Journal of the Electrochemical Society, 122, pp. 1619-1626
  • Davitt, H.J., Albright, L.F., Electrochemical Hydrogenation of Ethylene, Acetylene, and Ethylene-Acetylene Mixtures (1971) Journal of the Electrochemical Society, pp. 236-242
  • Anantharaman, V., Pintauro, P.N., The Electrocatalytic Hydrogenation of Glucose I. Kinetics of Hydrogen Evolution and Glucose Hydrogenation on Raney Nickel Powder (1994) Journal Electrochemical Society, 141, pp. 2729-2741
  • Yusem, G.J., Pintauro, P.N., The electrocatalytic hydrogenation of soybean oil (1992) Journal of the American Oil ChemistsÍ Society, 69, pp. 399-404
  • An, W., Ki, J., Pintauro, P.N., Warner, K., Neff, W., The Electrochemical Hydrogenation of Edible Oils in a Solid Polymer Electrolyte Reactor. I. Reactor Design and Operation (1998) Journal of the American Oil Chemists' Society, 75
  • Ogumi, Z., Nishio, K., Yoshizawa, S., Aplication of the SPE Method to Organic Electrochemistry-II. Electrochemical Hydrogenation of Olefinic Double Bonds (1981) Electrochimica Acta, 26, pp. 1779-1782
  • Vasile, M.J., Enke, C.G., The Preparation and Thermodynamic Properties of a Palladium-Hydrogen Electrode (1965) Journal Electrochemical Society, 112, pp. 865-870
  • Schuldiner, S., Castellan, G.W., Hoare, J.P., Electrochemical Behavior of the Palladium-Hydrogen System. I. Potential-Determining Mechanisms (1958) The Journal of Chemical Physics, 28. , 16-16
  • Baldauf, M., Kolb, D.M., A hydrogen adsorption and absorption study with ultrathin Pd overlayers on Au (1 1 1) and Au (1 0 0) (1993) Electrochimica Acta, 38, pp. 2145-2153
  • Vago, M., Williams, F.J., Calvo, E.J., Enantioselective electrocatalytic hydrogenation of ethyl pyruvate on carbon supported Pd electrodes (2007) Electrochemistry Communications, 9, pp. 2725-2728
  • Polcaro, A.M., Palmas, S., Dernini, S., Electrochemical reduction of carbonyl compounds at modified carbon felt electrodes (1993) Electrochimica Acta, 38, pp. 199-203
  • Cirtiu, C.M., Brisach-Wittmeyer, A., Me, H., Comparative study of catalytic and electrocatalytic hydrogenation of benzophenone (2007) Catalysis Communications, 8, pp. 751-754
  • Nolen, T.R., Fedkiw, P.S., Kinetic study of the electroreduction of nitrobenzene (1990) Journal of Applied Electrochemistry, 20, pp. 370-376
  • Marquez, J., Pletcher, D., A study of the electrochemical reduction of nitrobenzene to p-aminophenol (1980) Journal of Applied Electrochemistry, 10, pp. 567-573
  • Kaufman, S., Nonaqueous Potentiometric Titration of Phenols with Palladium-Hydrogen Electrodes (1975) Analytical Chemistry, 47, pp. 3-6
  • Reilley, C.N., Potentiometric Titrations (1958) Review of Fundamental Developments in Analysis, 654, pp. 185-193
  • Lasia, A., On the mechanism of the hydrogen absorption reaction (2006) Journal of Electroanalytical Chemistry, 593, pp. 159-166
  • Birry, L., Lasia, A., Effect of crystal violet on the kinetics of H sorption into Pd (2006) Electrochimica Acta, 51, pp. 3356-3364
  • Iwakura, C., Abe, T., Inoue, H., A new successive system for hydrogenation of styrene using a two-comparment cell separeted Pd sheet electrode (1996) Electrochemical Society Letters, 143, pp. 71-72
  • Fang, L.-L., Tao, Q., Li, M.-F., Liao, L.-W., Chen, D., Chen, Y.-X., Determination of the Real Surface Area of Palladium Electrode, Chinese (2010) Journal of Chemical Physics, 23, pp. 543-548
  • Pyun, S.-I., Lee, J.-W., Han, J.-N., The Kinetics of Hydrogen Transport through Pd Foil Electrode in the Coexistence of Two Hydride Phases by Analysis of Anodic Current Transient (2002) Journal of New Materials for Electrochemical Systems, 249, pp. 243-249
  • Łukaszewski, Zurowski, A., Czerwiński, A., Hydrogen in thin Pd-based layers deposited on reticulated vitreous carbon-A new system for electrochemical capacitors (2008) Journal of Power Sources, 185, pp. 1598-1604
  • Beraud, V., Lessard, J., Thomalla, M., The influence of a non-micelle-forming surfactant on the electrocatalytic hydrogenation of carvone and limonene in aqueous medium at Raney Niquel electrodes (1997) Can. J. Chem., 75, pp. 1529-1535
  • Ilikti, H., Rekik, N., Thomalla, M., Electrocatalytic hydrogenation of alkyl-substituted phenols in aqueous solutions at a Raney nickel electrode in the presence of a non-micelle-forming cationic surfactant (2004) Journal of Applied Electrochemistry, pp. 127-136
  • Libot, C., Pletcher, D., The reduction of carbonyl compounds at carbon electrodes in acidic water/methanol mixtures (2000) Electrochemistry Communications, 2, pp. 141-144
  • Lain, M.J., Pletcher, D., In situ electrodeposition of electrocatalyst for the hydrogenation of carbonyl compounds (1986) Electrochimica Acta, 32, pp. 109-113
  • Parsons, R., The effect of specific adsorption on the rate of an electrode process (1969) Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 21, pp. 35-43
  • Motto, S., Furuya, N., Surface geometry and electrocatalytic activity (1989) Materials Chemistry and Physics, 22, pp. 309-323
  • Han, J.-N., Pyun, S.-I., Yang, T.-H., Roles of Thiourea as an Inhibitor in Hydrogen Absorption into Palladium Electrode (1997) Journal Electrochemical Society, 144, pp. 4266-4272
  • Polcaro, Palmas, S., Dernini, S., Role of Catalyst Characteristics in Electrocatalytic Hydrogenation: Reduction of Benzaldehyde and Acetophenone on Carbon Felt/Pd Electrodes (1993) Industrial & Engineering Chemistry Research, 32, pp. 1315-1322

Citas:

---------- APA ----------
Villalba, M., Del Pozo, M. & Calvo, E.J. (2015) . Electrocatalytic hydrogenation of acetophenone and benzophenone using palladium electrodes. Electrochimica Acta, 164, 125-131.
http://dx.doi.org/10.1016/j.electacta.2015.02.113
---------- CHICAGO ----------
Villalba, M., Del Pozo, M., Calvo, E.J. "Electrocatalytic hydrogenation of acetophenone and benzophenone using palladium electrodes" . Electrochimica Acta 164 (2015) : 125-131.
http://dx.doi.org/10.1016/j.electacta.2015.02.113
---------- MLA ----------
Villalba, M., Del Pozo, M., Calvo, E.J. "Electrocatalytic hydrogenation of acetophenone and benzophenone using palladium electrodes" . Electrochimica Acta, vol. 164, 2015, pp. 125-131.
http://dx.doi.org/10.1016/j.electacta.2015.02.113
---------- VANCOUVER ----------
Villalba, M., Del Pozo, M., Calvo, E.J. Electrocatalytic hydrogenation of acetophenone and benzophenone using palladium electrodes. Electrochim Acta. 2015;164:125-131.
http://dx.doi.org/10.1016/j.electacta.2015.02.113