Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

An electrochemical reactor for the extraction of lithium from natural brine has been designed. It comprises two 3D porous packed bed electrodes and a porous separator filled with electrolyte. The electrodes are filled with conducting petroleum coke particles covered respectively with LiMn 2 O 4 selective to lithium ions and polypyrrole selective to anions. It operates in two steps: First, the porous electrodes and the separator are filled with natural brine to extract Li + and Cl - by intercalation and adsorption. Then, after rinsing with water the reactor is filled with a dilute LiCl recovery solution and LiCl is recovered by reversing the electrical current. A mathematical model for the reactor comprising the Nernst-Planck equation and the battery intercalation model has been developed. The model was solved using the finite element method under the COMSOL Multiphysics environment in order to obtain the electrostatic potential and the ion currents and concentrations across the system. Unlike the asymmetric LiMn 2 O 4 /activated carbon super-capacitor, in the lithium extracting reactor the total LiCl concentration decreases in the extraction step and increases in the recovery step. A good agreement between the experimental and simulated potential difference vs. time at constant current validates the model of the reactor. © The Author(s) 2018. Published by ECS.

Registro:

Documento: Artículo
Título:Sustainable electrochemical extraction of lithium from natural brine for renewable energy storage
Autor:Romero, V.C.E.; Tagliazucchi, M.; Flexer, V.; Calvo, E.J.
Filiación:Ctro. de Invest. y Desarrollo en Materiales Avanzados y Almacenamiento de Energia de Jujuy-CIDMEJu, CONICET-Universidad Nacional de Jujuy, Centro de Desarrollo Tecnológico General Savio, Palpalá, Jujuy, AR-4612, Argentina
INQUIMAE, CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, AR-1428, Argentina
Palabras clave:Chlorine compounds; Electrodes; Electrolytes; Extraction; Ions; Lithium; Lithium-ion batteries; Manganese compounds; Packed beds; Petroleum coke; Polypyrroles; Recovery; Separators; Comsol multiphysics; Electrical current; Electrochemical extraction; Electrochemical reactor; Electrostatic potentials; Nernst-Planck equations; Potential difference; Renewable energy storages; Lithium compounds
Año:2018
Volumen:165
Número:10
Página de inicio:A2294
Página de fin:A2302
DOI: http://dx.doi.org/10.1149/2.0741810jes
Título revista:Journal of the Electrochemical Society
Título revista abreviado:J Electrochem Soc
ISSN:00134651
CODEN:JESOA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134651_v165_n10_pA2294_Romero

Referencias:

  • For instance a Tesla S electric car with 7104 cells × 2,4 Ah/cell = 17.050 Ah. Each 2.4 Ah NCA cell has 0.91 g of Li and the car battery 6,5 kg of Li. Compare to an i-phone with 1400 mAh LNC battery with 0.527 g Li, in (Note); Flexer, V., Baspineiro, C.F., Galli, C.I., (2018) Science of the Total Environment, 639, p. 1188
  • Border, S., Sawyer, L., (2014) Transactions of the Institutions of Mining and Metallurgy, Section B: Applied Earth Science, 123, p. 95
  • Swain, B., (2017) Separation and Purification Technology, 172, p. 388
  • Calvo, E.J., (2017) Lithium Producers Report, in, Bright Minds Challenge Prize Communication, , ed., Editor
  • Kanoh, H., Ooi, K., Miyai, Y., Katoh, S., (1991) Langmuir, 7, p. 1841
  • Kanoh, H., Ooi, K., Miyai, Y., Katoh, S., (1993) Separation Science and Technology, 28, p. 643
  • Kanoh, H., Feng, Q., Hirotsu, T., Ooi, K., (1996) Journal of the Electrochemical Society, 143, p. 2610
  • Pasta, M., Battistel, A., La Mantia, F., (2012) Energy and Environmental Science, 5, p. 9487
  • Trocoli, R., Battistel, A., La Mantia, F., (2015) ChemSusChem, 8, p. 2514
  • Trocoli, R., Battistel, A., Mantia, F.L., (2014) Chemistry - A European Journal, 20, p. 9888
  • Lee, J., Yu, S.H., Kim, C., Sung, Y.E., Yoon, J., (2013) Physical Chemistry Chemical Physics, 15, p. 7690
  • Kim, S., Lee, J., Kang, J.S., Jo, K., Kim, S., Sung, Y.E., Yoon, J., (2015) Chemosphere, 125, p. 50
  • Kim, J.-S., Lee, Y.-H., Choi, S., Shin, J., Dinh, H.-C., Choi, J.W., (2015) Environmental Science & Technology, 49, p. 9415
  • Hoshino, T., (2013) Fusion Engineering and Design, 88, p. 2956
  • Hoshino, T., (2013) ECS Transactions, 58, p. 173
  • Intaranont, N., Garcia-Araez, N., Hector, A.L., Milton, J.A., Owen, J.R., (2014) Journal of Materials Chemistry A, 2, p. 6374
  • Liu, X., Chen, X., Zhao, Z., Liang, X., (2014) Hydrometallurgy, 146, p. 24
  • Zhao, M.-Y., Ji, Z.-Y., Zhang, Y.-G., Guo, Z.-Y., Zhao, Y.-Y., Liu, J., Yuan, J.-S., (2017) Electrochimica Acta, 252, p. 350
  • Okano, K., Takami, Y., Yanase, S., Oi, T., (2015) Energy Procedia, 71, p. 140
  • Guyot, E., Seghir, S.S., Diliberto, S., Lecuire, J.-M., Boulanger, C., (2012) Electrochemistry Communications, 29
  • Jiang, C., Wang, Y., Wang, Q., Feng, H., Xu, T., (2014) Industrial and Engineering Chemistry Research, 53, p. 6103
  • Ryu, T., Lee, D.H., Ryu, J.C., Shin, J., Chung, K.S., Kim, Y.H., (2015) Hydrometallurgy, 151, p. 78
  • Ryu, T., Ryu, J.C., Shin, J., Lee, D.H., Kim, Y.H., Chung, K.S., (2013) Industrial and Engineering Chemistry Research, 52, p. 13738
  • Somrani, A., Hamzaoui, A.H., Pontie, M., (2013) Desalination, 317, p. 184
  • Marchini, F., Rubi, D., Del Pozo, M., Williams, F.J., Calvo, E.J., (2016) Journal of Physical Chemistry C, 120 (29), p. 15875
  • Missoni, L.L., Marchini, F., Pozo, M.D., Calvo, E.J., (2016) Journal of the Electrochemical Society, 163, p. A1898
  • Hao, C., Wang, X., Yin, Y., You, Z., (2015) Journal of Electronic Materials, 45 (1), p. 515
  • Wang, Y.-G., Xia, Y.-Y., (2006) Journal of the Electrochemical Society, 153, p. A450
  • Marchini, F., Calvo, E.J., Williams, F.J., (2018) Electrochimica Acta, 269, p. 706
  • Marchini, F., Williams, F.J., Calvo, E.J., (2018) Journal of Electroanalytical Chemistry, 819, p. 428
  • Bright Minds Challenge Award for Ernesto Julio Calvo with Inquimae, , https://www.dsm.com/corporate/media/informationcenter-news/2017/06/2017-06-13-dsm-and-partners-announce-bright-minds-challenge-award-winner.html, R. DSM
  • Doyle, M., Newman, J., Gozdz, A.S., Schmutz, C.N., Tarascon, J.M., (1996) Journal of the Electrochemical Society, 143, p. 1890
  • Fuller, T.F., Doyle, M., Newman, J., (1994) Journal of the Electrochemical Society, 141, p. 1
  • Newman, J., Thomas-Alyea, K.E., (2004) Electrochemical Systems, , John Wiley & Sons, Inc., Hoboken, New Jersey
  • Wang, Y., Xia, Y., (2006) Journal of the Electrochemical Society, 153, p. A450
  • Wang, F.X., Xiao, S.Y., Zhu, Y.S., Chang, Z., Hua, C.L., Wua, Y.P., Holze, R., (2014) Journal of Power Sources, 246, p. 19
  • Tanaka, K., Nomura, M., (1987) Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83, p. 1779
  • Johnson, A.M., Newman, J., (1971) Journal of the Electrochemical Society, 118, p. 510
  • Kim, J.-H., Lee, Y.-S., Sharma, A.K., Liu, C.G., (2006) Electrochimica Acta, 52, p. 1727
  • Wang, F.X., Xiao, S.Y., Zhu, Y.S., Chang, Z., Hu, C.L., Wu, Y.P., Holze, R., (2014) Journal of Power Sources, 246, p. 19
  • Batteries & Fuel Cells Module. User's Guide (2016) COMSOL, , COMSOL
  • Turq, P., Lantelme, F., Chemla, M., (1969) Electrochimica Acta, 14, p. 1081
  • Yuan-Hui, L., Gregory, S., (1974) Geochimica et Cosmochimica Acta, 38, p. 703
  • Griffiths, M., De León, C.P., Walsh, F.C., (2005) AIChE Journal, 51, p. 682
  • Rivera, F.F., León, C.P.D., Walsh, F.C., Nava, J.L., (2015) Electrochimica Acta, 161, p. 436
  • Trinidad, P., Walsh, F.C., (1996) Electrochimica Acta, 41, p. 493
  • Guyomard, D., Tarascon, J.M., (1992) Journal of the Electrochemical Society, 139, p. 937
  • Guyomard, D., Tarascon, J.M., (1993) Journal of the Electrochemical Society, 140, p. 3071
  • Guyomard, D., Tarascon, J.M., (1994) Advanced Materials, 6, p. 408

Citas:

---------- APA ----------
Romero, V.C.E., Tagliazucchi, M., Flexer, V. & Calvo, E.J. (2018) . Sustainable electrochemical extraction of lithium from natural brine for renewable energy storage. Journal of the Electrochemical Society, 165(10), A2294-A2302.
http://dx.doi.org/10.1149/2.0741810jes
---------- CHICAGO ----------
Romero, V.C.E., Tagliazucchi, M., Flexer, V., Calvo, E.J. "Sustainable electrochemical extraction of lithium from natural brine for renewable energy storage" . Journal of the Electrochemical Society 165, no. 10 (2018) : A2294-A2302.
http://dx.doi.org/10.1149/2.0741810jes
---------- MLA ----------
Romero, V.C.E., Tagliazucchi, M., Flexer, V., Calvo, E.J. "Sustainable electrochemical extraction of lithium from natural brine for renewable energy storage" . Journal of the Electrochemical Society, vol. 165, no. 10, 2018, pp. A2294-A2302.
http://dx.doi.org/10.1149/2.0741810jes
---------- VANCOUVER ----------
Romero, V.C.E., Tagliazucchi, M., Flexer, V., Calvo, E.J. Sustainable electrochemical extraction of lithium from natural brine for renewable energy storage. J Electrochem Soc. 2018;165(10):A2294-A2302.
http://dx.doi.org/10.1149/2.0741810jes