Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In situ infrared subtractive normalized Fourier transform infrared spectroscopy (SNIFTIRS) experiments were performed simultaneously with the electrochemical experiments relevant to Li-air battery operation on gold cathodes in ionic liquid PYR14TFSI based electrolyte. Ionic liquid anion was found to be stable, while the cation PYR14 + was found to decompose in studied conditions. In oxygen saturated LiTFSI containing PYR14TFSI electrolyte carbon dioxide and water were formed at potential 4.3 V either with or without previous oxygen electro-reduction reaction. However in deoxygenated LiTFSI contacting ionic liquid no formation of CO2 or water was observed, suggesting oxygen presence to be crucial in carbon dioxide production. © 2017 The Electrochemical Society. All rights reserved.

Registro:

Documento: Artículo
Título:In situ infrared spectroscopy study of PYR14TFSI ionic liquid stability for Li–O2 battery
Autor:Mozhzhukhina, N.; Tesio, A.Y.; Mendez De Leo, L.P.; Calvo, E.J.
Filiación:INQUIMAE-CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Carbon dioxide; Electric batteries; Electrolytes; Fourier transform infrared spectroscopy; Infrared spectroscopy; Ionic liquids; Liquids; Lithium batteries; Oxygen; Electrochemical experiments; Li-air batteries; Liquid stability; NO formation; Oxygen electro reductions; Situ infrared spectroscopy; SNIFTIRS; Lithium compounds
Año:2017
Volumen:164
Número:2
Página de inicio:A518
Página de fin:A523
DOI: http://dx.doi.org/10.1149/2.1391702jes
Título revista:Journal of the Electrochemical Society
Título revista abreviado:J Electrochem Soc
ISSN:00134651
CODEN:JESOA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00134651_v164_n2_pA518_Mozhzhukhina

Referencias:

  • Grande, L., Paillard, E., Hassoun, J., Park, J.B., Lee, Y.J., Sun, Y.K., Passerini, S., Scrosati, B., The lithium/air battery: Still an emerging system or a practical reality? (2015) Adv Mater, 27, p. 784
  • Ma, Z., Yuan, X., Li, L., Ma, Z.-F., Wilkinson, D.P., Zhang, L., Zhang, J., A review of cathode materials and structures for rechargeable lithium-air batteries (2015) Energy & Environmental Science, 8, p. 2144
  • Van Noorden, R., The rechargeable revolution: A better battery (2014) Nature, 507, p. 26
  • Imanishi, N., Yamamoto, O., Rechargeable lithium–air batteries: Characteristics and prospects (2014) Materials Today, 17, p. 24
  • Amine, K., Kanno, R., Tzeng, Y., Rechargeable lithium batteries and beyond: Progress, challenges, and future directions (2014) MRS Bulletin, 39, p. 395
  • Luntz, A.C., McCloskey, B.D., Nonaqueous Li-air batteries: A status report (2014) Chemical Reviews, 114, p. 11721
  • Lu, J., Li, L., Park, J.B., Sun, Y.K., Wu, F., Amine, K., Aprotic and aqueous Li-O(2) batteries (2014) Chemical Reviews, 114, p. 5611
  • Scrosati, B., Abraham, K.M., Van Schalkwijk, W., Hassoun, J., (2013) Lithium Batteries
  • Garcia-Araez, N., Novák, P., Critical aspects in the development of lithium–air batteries (2013) Journal of Solid State Electrochemistry, 17, p. 1793
  • Cheng, F., Chen, J., Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts (2012) Chemical Society Reviews, 41, p. 2172
  • Hardwick, L.J., Bruce, P.G., The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes (2012) Current Opinion in Solid State and Materials Science, 16, p. 178
  • Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G., A reversible and higher-rate Li-O2 battery (2012) Science, 337, p. 563
  • Choi, N.S., Chen, Z., Freunberger, S.A., Ji, X., Sun, Y.K., Amine, K., Yushin, G., Bruce, P.G., Challenges facing lithium batteries and electrical double-layer capacitors (2012) Angew Chem Int Ed Engl, 51, p. 9994
  • Christensen, J., Albertus, P., Sanchez-Carrera, R.S., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J., Kojic, A., A Critical Review of Li/Air Batteries (2012) Journal of The Electrochemical Society, 159, p. R1
  • Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S., Wilcke, W., Lithium-air battery: Promise and challenges (2010) Journal of Physical Chemistry Letters, 1, p. 2193
  • Abraham, K.M., Lithium–Air and Other Batteries Beyond Lithium-Ion Batteries (2013) Lithium Batteries, p. 161. , John Wiley & Sons, Inc
  • Calvo, E.J., The kinetics of oxygen electroreduction: A long way from iron rust to lithium-air batteries (2014) Materials and Corrosion, 65, p. 345
  • Sharon, D., Hirshberg, D., Afri, M., Garsuch, A., Frimer, A.A., Aurbach, D., Lithium-oxygen electrochemistry in non-aqueous solutions (2015) Israel Journal of Chemistry, 55, p. 508
  • Kar, M., Simons, T.J., Forsyth, M., MacFarlane, D.R., Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: A perspective (2014) Physical Chemistry Chemical Physics, 16, p. 18658
  • MacFarlane, D.R., Forsyth, M., Howlett, P.C., Kar, M., Passerini, S., Pringle, J.M., Ohno, H., Zhang, J., Ionic liquids and their solid-state analogues as materials for energy generation and storage (2016) Nature Reviews Materials, 1, p. 15005
  • AlNashef, I.M., Leonard, M.L., Matthews, M.A., Weidner, J.W., Superoxide electrochemistry in an ionic liquid (2002) Industrial and Engineering Chemistry Research, 41, p. 4475
  • Carter, M.T., Hussey, C.L., Strubinger, S.K.D., Osteryoung, R.A., Electrochemical reduction of dioxygen in room-temperature imidazolium chloride-aluminum chloride molten salts (1991) Inorganic Chemistry, 30, p. 1149
  • Huango, X.J., Rogers, E.I., Hardacre, C., Compton, R.G., The reduction of oxygen in various room temperature ionic liquids in the temperature range 293-318 K: Exploring the applicability of the Stokes-Einstein relationship in room temperature ionic liquids (2009) Journal of Physical Chemistry B, 113, p. 8953
  • Evans, R.G., Klymenko, O.V., Saddoughi, S.A., Hardacre, C., Compton, R.G., Electroreduction of oxygen in a series of room temperature ionic liquids composed of group 15-centered cations and anions (2004) Journal of Physical Chemistry B, 108, p. 7878
  • Katayama, Y., Onodera, H., Yamagata, M., Miura, T., Electrochemical reduction of oxygen in some hydrophobic room-temperature molten salt systems (2004) Journal of The Electrochemical Society, 151, p. A59
  • Katayama, Y., Sekiguchi, K., Yamagata, M., Miura, T., Electrochemical behavior of oxygen/superoxide ion couple in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide room-temperature molten salt (2005) Journal of The Electrochemical Society, 152, p. E247
  • Monaco, S., Arangio, A.M., Soavi, F., Mastragostino, M., Paillard, E., Passerini, S., An electrochemical study of oxygen reduction in pyrrolidinium-based ionic liquids for lithium/oxygen batteries (2012) Electrochimica Acta, 83, p. 94
  • De Giorgio, F., Soavi, F., Mastragostino, M., Effect of lithium ions on oxygen reduction in ionic liquid-based electrolytes (2011) Electrochemistry Communications, 13, p. 1090
  • Allen, C.J., Hwang, J., Kautz, R., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., Oxygen Reduction Reactions in Ionic Liquids and the Formulation of a General ORR Mechanism for Li–Air Batteries (2012) The Journal of Physical Chemistry C, 116, p. 20755
  • Allen, C.J., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., Oxygen Electrode Rechargeability in an Ionic Liquid for the Li–Air Battery (2011) The Journal of Physical Chemistry Letters, 2, p. 2420
  • Lodge, A.W., Lacey, M.J., Fitt, M., Garcia-Araez, N., Owen, J.R., Critical appraisal on the role of catalysts for the oxygen reduction reaction in lithium-oxygen batteries (2014) Electrochimica Acta, 140, p. 168
  • Herranz, J., Garsuch, A., Gasteiger, H.A., Using Rotating Ring Disc Electrode Voltammetry to Quantify the Superoxide Radical Stability of Aprotic Li–Air Battery Electrolytes (2012) The Journal of Physical Chemistry C, 116, p. 19084
  • Frith, J.T., Russell, A.E., Garcia-Araez, N., Owen, J.R., An in-situ Raman study of the oxygen reduction reaction in ionic liquids (2014) Electrochemistry Communications, 46, p. 33
  • Kuboki, T., Okuyama, T., Ohsaki, T., Takami, N., Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte (2005) Journal of Power Sources, 146, p. 766
  • Elia, G.A., Hassoun, J., Kwak, W.J., Sun, Y.K., Scrosati, B., Mueller, F., Bresser, D., Reiter, J., An advanced lithium-air battery exploiting an ionic liquid-based electrolyte (2014) Nano Letters, 14, p. 6572
  • Piana, M., Wandt, J., Meini, S., Buchberger, I., Tsiouvaras, N., Gasteiger, H.A., Stability of a Pyrrolidinium-Based Ionic Liquid in Li-O2 Cells (2014) Journal of The Electrochemical Society, 161, p. A1992
  • Mozhzhukhina, N., Méndez De Leo, L.P., Calvo, E.J., Infrared Spectroscopy Studies on Stability of Dimethyl Sulfoxide for Application in a Li–Air Battery (2013) The Journal of Physical Chemistry C, 117, p. 18375
  • Vivek, J.P., Berry, N., Papageorgiou, G., Nichols, R.J., Hardwick, L.J., Mechanistic Insight into the Superoxide Induced Ring Opening in Propylene Carbonate Based Electrolytes using in Situ Surface-Enhanced Infrared Spectroscopy (2016) Journal of The American Chemical Society, 138, p. 3745
  • Zamlynny, V., Lipkowski, J., Quantitative SNIFTIRS and PM IRRAS of Organic Molecules at Electrode Surfaces (2008) Book: Advances in Electrochemical Science and Engineering: Diffraction and Spectroscopic Methods in Electrochemistry, 9, p. 315. , Wiley
  • Iwasita, T., Nart, F.C., In situ infrared spectroscopy at electrochemical interfaces (1997) Progress in Surface Science, 55, p. 271
  • Baltruschat, H., Differential electrochemical mass spectrometry (2004) Journal of The American Society for Mass Spectrometry, 15, p. 1693
  • Abd-El-Latif Baltruschat, H.A.E., Electrochemical Mass Spectroscopy (2014) Encyclopedia of Applied Electrochemistry, pp. 507-516. , G. Kreysa, K.-i. Ota, and R. Savinell, Eds. Springer: New York
  • Howlett, P.C., Brack, N., Hollenkamp, A.F., Forsyth, M., MacFarlane, D.R., Characterization of the Lithium Surface in N-Methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide Room-Temperature Ionic Liquid Electrolytes (2006) Journal of The Electrochemical Society, 153, p. A595
  • Hanke, K., Kaufmann, M., Schwaab, G., Havenith, M., Wolke, C.T., Gorlova, O., Johnson, M.A., Sanchez-Garcia, E., Understanding the ionic liquid [NC4111][NTf2] from individual building blocks: An IR-spectroscopic study (2015) Physical Chemistry Chemical Physics, 17, p. 8518
  • Lahiri, A., Borisenko, N., Borodin, A., Olschewski, M., Endres, F., Characterisation of the solid electrolyte interface during lithiation/delithiation of germanium in an ionic liquid (2016) Physical Chemistry Chemical Physics, 18, p. 5630
  • Cheung, O., Bacsik, Z., Liu, Q., Mace, A., Hedin, N., Adsorption kinetics for CO2 on highly selective zeolites NaKA and nano-NaKA (2013) Applied Energy, 112, p. 1326
  • Nart, F., Iwasita, T., In situ FTIR as a Tool for Mechanistic Studies (2003) Encyclopedia of Electrochemistry, , Fundamentals and Applications. In in Wiley-VCH, Ed
  • Lin-Vein, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G., (1991) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, , Academic Press, Inc. San Diego, CA
  • Rey, I., Johansson, P., Lindgren, J., Lassègues, J.C., Grondin, J., Servant, L., Spectroscopic and Theoretical Study of (CF3SO2)2N- (TFSI-) and (CF3SO2)2NH (HTFSI) (1998) The Journal of Physical Chemistry A, 102, p. 3249

Citas:

---------- APA ----------
Mozhzhukhina, N., Tesio, A.Y., Mendez De Leo, L.P. & Calvo, E.J. (2017) . In situ infrared spectroscopy study of PYR14TFSI ionic liquid stability for Li–O2 battery. Journal of the Electrochemical Society, 164(2), A518-A523.
http://dx.doi.org/10.1149/2.1391702jes
---------- CHICAGO ----------
Mozhzhukhina, N., Tesio, A.Y., Mendez De Leo, L.P., Calvo, E.J. "In situ infrared spectroscopy study of PYR14TFSI ionic liquid stability for Li–O2 battery" . Journal of the Electrochemical Society 164, no. 2 (2017) : A518-A523.
http://dx.doi.org/10.1149/2.1391702jes
---------- MLA ----------
Mozhzhukhina, N., Tesio, A.Y., Mendez De Leo, L.P., Calvo, E.J. "In situ infrared spectroscopy study of PYR14TFSI ionic liquid stability for Li–O2 battery" . Journal of the Electrochemical Society, vol. 164, no. 2, 2017, pp. A518-A523.
http://dx.doi.org/10.1149/2.1391702jes
---------- VANCOUVER ----------
Mozhzhukhina, N., Tesio, A.Y., Mendez De Leo, L.P., Calvo, E.J. In situ infrared spectroscopy study of PYR14TFSI ionic liquid stability for Li–O2 battery. J Electrochem Soc. 2017;164(2):A518-A523.
http://dx.doi.org/10.1149/2.1391702jes