Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the flat slab region of the South Central Andes (∼31–32°S), geological observations suggest that the regional crustal structure is inherited from the accretion of different terranes during the Ordovician. These structures were later reactivated, first in extension during the Triassic and later in compression during the Andean uplift since the Miocene. Seismological observations confirmed that those fault structures extend to depth with décollement levels that accommodate current crustal shortening in the region. In order to get better insight on the regional tectonics we computed higher frequency receiver functions (RF) from local slab seismicity of intermediate ∼100 km depth. Using a common conversion point (CCP) stacking method we obtained cross sections showing high vertical resolution crustal structure at the transition between the Precordillera and the Frontal Cordillera. In addition we performed a joint inversion of our high frequency RFs with surface wave data from ambient noise tomography allowing us to constrain absolute seismic wave velocities. Our higher resolution images reveal more structural details down to a depth of 80 km and laterally over the flat slab in good agreement with previous studies. Our results help to better identify very shallow discontinuities in seismic velocities. Recent petrological analyses combined with our high-resolution RF structure correlates with a crustal mafic composition and partial eclogitization in the lower crust. We observe a shift in the crustal structure between the Precordillera (east) and the Frontal Cordillera (west). Regional seismicity and previously determined focal mechanisms superimposed over our images indicate this shifting is a thrust structure extending down to a depth of 40 km. Our results suggest the presence of a master fault between the Cuyania (Western Precordillera) and Chilenia (Frontal Cordillera) terranes that probably accommodates the crustal deformation in the Pampean flat slab region since the Late Ordovician. © 2016 Elsevier B.V.

Registro:

Documento: Artículo
Título:High-resolution images above the Pampean flat slab of Argentina (31–32°S) from local receiver functions: Implications on regional tectonics
Autor:Ammirati, J.-B.; Pérez Luján, S.; Alvarado, P.; Beck, S.; Rocher, S.; Zandt, G.
Filiación:Centro de Investigaciones de la Geósfera y Biósfera (CIGEOBIO-CONICET), Universidad Nacional de San Juan, Argentina
Department of Geosciences, University of Arizona, United States
Centro Regional de Investigaciones y Transferencia Tecnológica de La Rioja (CRILAR-CONICET), Argentina
Instituto de Estudios Andinos Don Pablo Groeber (IDEAN-CONICET), Universidad de Buenos Aires, Argentina
Palabras clave:Andean retroarc; body waves; Eclogite; South America; subduction; surface waves; Faulting; Seismic waves; Seismology; Structural geology; Surface waves; Andean retroarc; Body waves; Eclogites; South America; subduction; Tectonics; body wave; crustal structure; deformation mechanism; eclogite; image resolution; Ordovician; regional geology; seismic tomography; seismic velocity; slab; stacking; subduction; tectonic setting; Andes; Argentina
Año:2016
Volumen:450
Página de inicio:29
Página de fin:39
DOI: http://dx.doi.org/10.1016/j.epsl.2016.06.018
Título revista:Earth and Planetary Science Letters
Título revista abreviado:Earth Plan. Sci. Lett.
ISSN:0012821X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0012821X_v450_n_p29_Ammirati

Referencias:

  • Allmendinger, R.W., Figueroa, D., Snyder, D., Beer, J., Mpodozis, C., Isacks, B.L., Foreland shortening and crustal balancing in the Andes at 30°S latitude (1990) Tectonics, 9, pp. 789-809
  • Allmendinger, R.W., Judge, P.A., The Argentine Precordillera: a foreland thrust belt proximal to the subducted plate (2014) Geosphere, 10 (6), pp. 1203-1218
  • Alvarado, P., Sánchez, G., Saez, M., Castro de Machuca, B., Nuevas evidencias de la actividad sísmica del terreno Cuyania en la región de subducción de placa horizontal de Argentina (2010) Rev. Mex. Cienc. Geol., 27 (2), pp. 278-291
  • Ammirati, J.-B., Alvarado, P., Perarnau, M., Saez, M., Monsalvo, G., Crustal structure of the Central Precordillera of San Juan, Argentina (31°S) using teleseismic receiver functions (2013) J. South Am. Earth Sci., 46, pp. 100-109
  • Ammirati, J.-B., Alvarado, P., Beck, S., A lithospheric velocity model for the flat slab region of Argentina from joint inversion of Rayleigh wave phase velocity dispersion and teleseismic receiver functions (2015) Geophys. J. Int., 202, pp. 224-241
  • Anderson, M., Alvarado, P., Zandt, P., Beck, S., Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina (2007) Geophys. J. Int., 171, pp. 419-434
  • Baldis, B., Beresi, M., Bordonaro, O., Vaca, A., Síntesis evolutiva de la Precordillera Argentina (1982) 5° Congres Latinoam. Geol., Actas 4, Buenos Aires, Argentina, pp. 399-445
  • Boedo, F.L., Vujovich, G.I., Kay, S.M., Ariza, J.P., Pérez Luján, S.B., The E-MORB like geochemical features of the Early Paleozoic mafic–ultramafic belt of the Cuyania terrane, Western Argentina (2013) J. South Am. Earth Sci., 48, pp. 73-84
  • Brocher, T.M., Empirical relations between elastic wavespeeds and density in the Earth's crust (2005) Bull. Seismol. Soc. Am., 95, pp. 2081-2092
  • Cahill, T., Isacks, B.L., Seismicity and the shape of the subducted Nazca plate (1992) J. Geophys. Res., 97, pp. 17503-17529
  • Calkins, J., Zandt, G., Gilbert, H., Beck, S., Crustal images from San Juan, Argentina, obtained using high frequency local event receiver functions (2006) Geophys. Res. Lett., 33, pp. 1-4
  • Castro de Machuca, B., Perarnau, M., Alvarado, P., López, G., Saez, M., A seismological and petrological crustal model for the southwest of the Sierra de Pie de Palo, Province of San Juan (2012) Rev. Asoc. Geol. Argent., 69, pp. 179-186
  • Christensen, N.I., Mooney, W.D., Seismic velocity structure and composition of the continental crust: a global view (1995) J. Geophys. Res., 100, pp. 9761-9788
  • Cristallini, E.O., Ramos, V.A., Thick-skinned and thin-skinned thrusting in the La Ramada fold and thrust belt: crustal evolution of the high Andes of San Juan, Argentina (32°SL) (2000) Tectonophysics, 317, pp. 205-235
  • Davis, J.S., Roeske, S.M., McClelland, W.C., Snee, L.W., Closing the ocean between the Precordillera terrane and Chilenia: early Devonian ophiolite emplacement and deformation in the southwest Precordillera (1999) Laurentia Gondwana Connections Before Pangea, Geol. Soc. Am. Special Paper, 336, pp. 115-138. , V.A. Ramos J.D. Keppie Geol. Soc. Am. Boulder, Colorado, USA
  • Dueker, K.G., Sheehan, A.F., Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track (1997) J. Geophys. Res., 102, pp. 8313-8327
  • Ebinger, C.J., Casey, M., Continental breakup in magmatic provinces: an Ethiopian example (2001) Geology, 29 (6), pp. 527-530
  • Gans, C.R., Beck, S.L., Zandt, G., Gilbert, H., Alvarado, P., Anderson, M., Linkimer, L., Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results (2011) Geophys. J. Int., 186, pp. 45-58
  • Giambiagi, L.B., Ramos, V.A., Structural evolution of the Andes in a transitional zone between flat and normal subduction (33°30′–33°45′S), Argentina and Chile (2002) J. South Am. Earth Sci., 15, pp. 101-116
  • Giese, P., Scheuber, E., Schilling, F., Schmidz, M., Wigger, P., Crustal thickening processes in the Central Andes and the different natures of the Moho-discontinuity (1999) J. South Am. Earth Sci., 12, pp. 201-220
  • Gilbert, H., Beck, S., Zandt, G., Lithospheric and upper mantle structure of central Chile and Argentina (2006) Geophys. J. Int., 165, pp. 383-398
  • Gurrola, H., Minster, J.B., Owens, T., The use of velocity spectrum for stacking receiver functions and imaging upper mantle discontinuities (1994) Geophys. J. Int., 117, pp. 427-440
  • Hacker, B.R., Eclogite formation and the rheology, buoyancy, seismicity, and H2O content of oceanic crust (1996) Geophysical Monograph, 96, pp. 337-346. , American Geophysical Union Washington D.C., USA
  • Heredia, N., Rodríguez Fernández, L.R., Gallastegui, G., Busquets, P., Colombo, F., Geological setting of the Argentine Frontal Cordillera in the flat-slab segment (30°00′–31°30′S latitude) (2002) J. South Am. Earth Sci., 15, pp. 79-99
  • Herrmann, R.B., Ammon, C.J., Computer programs in seismology – 3.30: surface waves, receiver functions and crustal structure (2002), www.eas.slu.edu/People/RBHerrmann/CPS330.html; Julià, J., Ammon, C.J., Herrmann, R.B., Correig, A.M., Joint inversion of receiver function and surface wave dispersion observations (2000) Geophys. J. Int., 143, pp. 99-112
  • Kay, S.M., Ramos, V.A., Kay, R.W., Elementos mayoritarios y trazas de las vulcanitas ordovícicas de la Precordillera Occidental: Basaltos de rift oceánico temprano (?) próximos al margen continental (1984) IX Congreso Geológico Argentino, Actas II, S.C. de Bariloche, Rio Negro, Argentina, pp. 48-65
  • Kay, S., Abbruzzi, J., Magmatic evidence for Neogene lithospheric evolution of the Central Andean flat-slab between 30 and 32°S (1996) Tectonophysics, 259, pp. 15-28
  • Kay, S.M., Orrell, S., Abbruzzi, J.M., Zircon and whole rock Ns–Pb isotopic evidence for a Greenville age and Laurentia origin for the basement of the Precordilleran Terrane in Argentina (1996) Geol. Soc. Am. South-Central Sec. Abs. Prog., 28 (1), pp. 21-22
  • Langston, C.A., Structure under Mount Rainier, Washington, inferred from teleseismic body waves (1979) J. Geophys. Res., 84, pp. 4749-4762
  • Ligorría, J., Ammon, C.J., Iterative deconvolution and receiver function estimation (1999) Bull. Seismol. Soc. Am., 89, pp. 1395-1400
  • Linkimer, L., Lithospheric structure of the Pampean flat slab (latitude 30–33°S) and Northern Costa Rica (latitude 9–11°N) subduction zones (2011), Dissertation (PhD) University of Arizona Tucson, Arizona, USA; Marot, M., Monfret, T., Pardo, M., Ranalli, G., Nolet, G., A double seismic zone in the subducting Juan Fernández Ridge of the Nazca Plate (32°S), central Chile (2013) J. Geophys. Res., 118 (7), pp. 3462-3475
  • Marot, M., Monfret, T., Gerbault, M., Nolet, G., Ranalli, G., Pardo, M., Flat versus normal subduction zones: a comparison based on 3-D regional traveltime tomography and petrological modelling of central Chile and western Argentina (29°–35°S) (2014) Geophys. J. Int., 199, pp. 1633-1654
  • Mulcahy, P., Chen, C., Kay, S.M., Brown, L.D., Isacks, B.L., Sandvol, E., Heit, B., Coira, B.L., Central Andean mantle and crustal seismicity beneath the Southern Puna plateau and the northern margin of the Chilean–Pampean flat slab (2014) Tectonics, 33 (8), pp. 1636-1658
  • Perarnau, M., Alvarado, P., Saez, M., Estimación de la estructura cortical de velocidades sísmicas en el suroeste de la Sierra de Pie de Palo, Provincia de San Juan (2010) Rev. Asoc. Geol. Argent., 64, pp. 473-480
  • Perarnau, M., Gilbert, H., Alvarado, P., Martino, R., Anderson, M., Crustal structure of the Eastern Sierras Pampeanas of Argentina using high frequency local receiver functions (2012) Tectonophysics, 580, pp. 208-217
  • Pérez Luján, S.B., Ammirati, J.-B., Alvarado, P., Vujovich, G.I., Constraining a mafic thick crust model in the Andean Precordillera of the Pampean flat slab subduction region (2015) J. South Am. Earth Sci., 64, pp. 325-338
  • Porter, R., Gilbert, H., Zandt, G., Beck, S., Warren, L., Calkins, J., Alvarado, P., Anderson, M., Shear wave velocities in the Pampean flat-slab region from Rayleigh wave tomography: implications for slab and upper mantle dehydration (2012) J. Geophys. Res., 117
  • Ragona, D., Anselmi, G., Gonzaléz, P., Vujovich, G., Mapa geológico de la provincia de San Juan (1995), República Argentina, Secretaría de Minería, Dirección Nacional del Servicio Geológico, Buenos Aires, Argentina; Ramos, V.A., The tectonics of the Central Andes: 30° to 33°S latitude (1988) Processes in Continental Lithospheric Deformation, pp. 31-54. , S.P. Clark J.B. Clark Burchfiel J. Suppe Geological Society of America
  • Ramos, V.A., Cristallini, E.O., Pérez, D.J., The Pampean flat-slab of the central Andes (2002) J. South Am. Earth Sci., 15, pp. 59-78
  • Regnier, M., Chiu, J.-M., Smalley, R., Isacks, B.L., Araujo, M., Crustal thickness variation in the Andean foreland, Argentina, from converted waves (1994) Bull. Seismol. Soc. Am., 84 (4), pp. 1097-1111
  • Rocher, S., Vallecillo, G.M., Castro de Machuca, B., Alasino, P.H., El Grupo Choiyoi (Pérmico temprano-medio) en la Cordillera Frontal de Calingasta, San Juan, Argentina: Volcanismo de arco asociado a extensión (2015) Rev. Mex. Cienc. Geol., 32 (3), pp. 415-432
  • Stauder, W., Mechanism and spatial distribution of Chilean earthquakes with relation to subduction of the oceanic plate (1973) J. Geophys. Res., 78, pp. 5033-5061
  • Strazzere, L., Gregori, D.A., Dristas, J.A., Genetic evolution of Permo–Triassic volcaniclastic sequences at Uspallata, Mendoza Precordillera, Argentina (2006) Gondwana Res., 9, pp. 485-499
  • Venerdini, A., Sánchez, G., Alvarado, P., Bilbao, I., Ammirati, J.-B., Nuevas determinaciones de velocidades de ondas P y ondas S para la corteza sísmica del terreno Cuyania en el retroarco andino (2016) Rev. Mex. Cienc. Geol., 33 (1), pp. 59-71
  • Wagner, L.S., Beck, S., Zandt, G., Upper mantle structure in the south central Chilean subduction zone (30° to 36°S) (2005) J. Geophys. Res., 110
  • Yáñez, G., Cembrano, J., Pardo, M., Ranero, C., Selles, D., The Challenger-Juan Fernández – Maipo major tectonic transition of the Nazca–Andean subduction system at 33–34°S: geodynamic evidence and implications (2002) J. South Am. Earth Sci., 15, pp. 23-38
  • Yang, X., Deloule, E., Xia, Q., Fan, Q., Feng, M., Water contrast between Precambrian and Phanerozoic continental lower crust in eastern China (2008) J. Geophys. Res., 113. , B08207
  • Zangh, Z., Wang, Y., Houseman, G.A., Xu, T., Wu, Z., Yuan, X., Chen, Y., Teng, J., The Moho beneath western Tibet: Shear zones and eclogitization in the lower crust (2014) Earth Planet. Sci. Lett., 408, pp. 370-377

Citas:

---------- APA ----------
Ammirati, J.-B., Pérez Luján, S., Alvarado, P., Beck, S., Rocher, S. & Zandt, G. (2016) . High-resolution images above the Pampean flat slab of Argentina (31–32°S) from local receiver functions: Implications on regional tectonics. Earth and Planetary Science Letters, 450, 29-39.
http://dx.doi.org/10.1016/j.epsl.2016.06.018
---------- CHICAGO ----------
Ammirati, J.-B., Pérez Luján, S., Alvarado, P., Beck, S., Rocher, S., Zandt, G. "High-resolution images above the Pampean flat slab of Argentina (31–32°S) from local receiver functions: Implications on regional tectonics" . Earth and Planetary Science Letters 450 (2016) : 29-39.
http://dx.doi.org/10.1016/j.epsl.2016.06.018
---------- MLA ----------
Ammirati, J.-B., Pérez Luján, S., Alvarado, P., Beck, S., Rocher, S., Zandt, G. "High-resolution images above the Pampean flat slab of Argentina (31–32°S) from local receiver functions: Implications on regional tectonics" . Earth and Planetary Science Letters, vol. 450, 2016, pp. 29-39.
http://dx.doi.org/10.1016/j.epsl.2016.06.018
---------- VANCOUVER ----------
Ammirati, J.-B., Pérez Luján, S., Alvarado, P., Beck, S., Rocher, S., Zandt, G. High-resolution images above the Pampean flat slab of Argentina (31–32°S) from local receiver functions: Implications on regional tectonics. Earth Plan. Sci. Lett. 2016;450:29-39.
http://dx.doi.org/10.1016/j.epsl.2016.06.018