Artículo

Jones, R.E.; De Hoog, J.C.M.; Kirstein, L.A.; Kasemann, S.A.; Hinton, R.; Elliott, T.; Litvak, V.D. "Temporal variations in the influence of the subducting slab on Central Andean arc magmas: Evidence from boron isotope systematics" (2014) Earth and Planetary Science Letters. 408:390-401
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Pampean flat-slab segment in the southern Central Andes represents an ideal setting at which to investigate how changes in the tectonic configuration of a subduction zone (convergence angles and rates, seamount subduction and shallowing slab angle) affects the recycling of subducted components to arc magmas. To constrain sources, particularly of slab-derived fluids and their contribution to arc magmatism, boron isotope and select major and trace element compositions were determined for pyroxene- and zircon-hosted melt inclusions obtained from a suite of Paleocene to Miocene arc magmatic rocks, from the southern Central Andes. Considerable changes in δB11 values and boron concentrations are observed with time. Significantly lower δB11 values (average =. -. 1.9. ±. 2.2‰. (1σ)) and B/Nb ratios (average =. 3.3. ±. 1.3. (1σ)) were obtained for melt inclusions from Oligocene arc rocks (~24 Ma) compared to those from the Paleocene (~61 Ma) (averages =. +. 1.6. ±. 0.8‰ and 17.8. ±. 1.4. (1σ), respectively) and the Miocene (~18 Ma) (averages =. +. 4.7. ±. 1.9‰ and 11.9. ±. 5.5 (1. σ), respectively).A slab-derived fluid with a δB11 composition of +1.5‰, primarily derived from altered oceanic crust on the down-going slab, affected the source of the Paleocene arc magma. The source of the Oligocene arc magmas received less boron derived from the subducting slab (≲1% fluid addition) than the Paleocene and Miocene arc magmas (up to 3.5% fluid addition). This is consistent with a greater depth to the slab-mantle interface and is potentially related to the widening of the volcanic arc and more distal position of these samples relative to the trench during this time period. The higher δB11 values (up to ~9‰) obtained for the Miocene melt inclusions record an increase in the influence of serpentinite-derived fluids on the source of arc magmas after ~19.5 Ma. This is approximately coeval with the subduction of the Juan Fernandez Ridge (JFR), suggesting that the oceanic lithosphere associated with the subducting JFR in the Early Miocene was hydrated and serpentinised, similar to the present day ridge. As serpentinisation increases the buoyancy of the slab this finding supports the link between the intersection of the JFR with the Andean margin and the onset of flat-slab subduction. © 2014 The Authors.

Registro:

Documento: Artículo
Título:Temporal variations in the influence of the subducting slab on Central Andean arc magmas: Evidence from boron isotope systematics
Autor:Jones, R.E.; De Hoog, J.C.M.; Kirstein, L.A.; Kasemann, S.A.; Hinton, R.; Elliott, T.; Litvak, V.D.
Filiación:School of GeoSciences, University of Edinburgh, Grant Institute, West Mains Road, Edinburgh, EH9 3JW, United Kingdom
Department of Geosciences and MARUM, Centre for Marine Environmental Sciences, University of Bremen, Bremen, 28334, Germany
School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, United Kingdom
Instituto de Estudios Andinos Don Pablo Groeber, Departamento de Ciencias Geológicas, Universidad de Buenos Aires - CONICET, Argentina
Edinburgh Ion Microprobe Facility, School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JW, United Kingdom
Palabras clave:Boron isotopes; Cenozoic arc magmatism; Melt inclusions; Slab-derived fluids; Southern central andes; Subduction zone geometry; Arc magmatism; Boron isotopes; Central Andes; Melt inclusions; Subduction zones; boron isotope; Cenozoic; igneous geochemistry; magmatism; melt inclusion; oceanic lithosphere; serpentinization; slab; subduction zone; tectonic setting; temporal variation; trace element; Andes; Juan Fernandez Ridge; Pacific Ocean
Año:2014
Volumen:408
Página de inicio:390
Página de fin:401
DOI: http://dx.doi.org/10.1016/j.epsl.2014.10.004
Título revista:Earth and Planetary Science Letters
Título revista abreviado:Earth Plan. Sci. Lett.
ISSN:0012821X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0012821X_v408_n_p390_Jones

Referencias:

  • Anderson, M., Alvarado, P., Zandt, G., Beck, S., Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina (2007) Geophys. J. Int., 171, pp. 419-434
  • Bissig, T., Lee, J.K.W., Clark, A.H., Heather, K.B., The Cenozoic history of volcanism and hydrothermal alteration in the Central Andean flat-slab region: new 40Ar-39Ar constraints from the El Indio-Pascua Au (-Ag, Cu) belt, 29°20'-30°30'S (2001) Int. Geol. Rev., 43, pp. 312-340
  • Boschi, C., Dini, A., Früh-Green, G.L., Kelley, D.S., Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30 N): insights from B and Sr isotope data (2008) Geochim. Cosmochim. Acta, 72, pp. 1801-1823
  • Cahill, T., Isacks, B.L., Seismicty and shape of the Subducted Nazca Plate (1992) J. Geophys. Res., 97, pp. 17503-17529
  • Charrier, R., Pinto, L., Rodríguez, M.P., Tectonostratigraphic evolution of the Andean Orogen in Chile (2007) The Geology of Chile, pp. 21-114. , The Geological Society, London, T. Moreno, W. Gibbons (Eds.)
  • Chaussidon, M., Albaréde, F., Secular boron isotope variations in the continental crust: an ion microprobe study (1992) Earth Planet. Sci. Lett., 108, pp. 229-241
  • Chaussidon, M., Marty, B., Primitive boron isotope composition of the mantle (1995) Science, 269, pp. 383-386
  • Cross, T.A., Pilger, R.H., Controls of subduction geometry, location of magmatic arcs, and tectonics of arc and back-arc regions (1982) Geol. Soc. Am. Bull., 93, pp. 545-562
  • Davidson, J.P., de Silva, S.L., Volcanic rocks from the Bolivian Altiplano: insights into crustal structure, contamination, and magma genesis in the central Andes (1992) Geology, 20, pp. 1127-1130
  • Escartín, J., Hirth, G., Evans, B., Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges (1997) Earth Planet. Sci. Lett., 151, pp. 181-189
  • Francis, T.J.G., Serpentinization faults and their role in the tectonics of slow spreading ridges (1981) J. Geophys. Res., Solid Earth, 86, pp. 11616-11622
  • Goss, A.R., Kay, S.M., Mpodozis, C., Andean adakite-like high-Mg andesites on the northern margin of the Chilean-Pampean flat-slab (27-28{dot operator}5°S) associated with frontal arc migration and fore-arc subduction erosion (2013) J. Petrol., 54, pp. 2193-2234
  • Gutscher, M.A., Spakman, W., Bijwaard, H., Engdahl, E.R., Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin (2000) Tectonics, 19, pp. 814-833
  • Harvey, J., Savov, I.P., Agostini, S., Cliff, R.A., Walshaw, R., Si-metasomatism in serpentinized peridotite: the effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209 (2014) Geochim. Cosmochim. Acta, 126, pp. 30-48
  • Hattori, K.H., Guillot, S., Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge (2003) Geology, 31, pp. 525-528
  • Hekinian, R., Bideau, D., Cannat, M., Francheteau, J., Hébert, R., Volcanic activity and crust-mantle exposure in the ultrafast Garrett transform fault near 13°28'S in the Pacific (1992) Earth Planet. Sci. Lett., 108, pp. 259-275
  • Hildreth, W., Moorbath, S., Crustal contributions to arc magmatism in the Andes of Central Chile (1988) Contrib. Mineral. Petrol., 98, pp. 455-489
  • Hyndman, R.D., Peacock, S.M., Serpentinization of the forearc mantle (2003) Earth Planet. Sci. Lett., 212, pp. 417-432
  • Isacks, B.L., Uplift of the central Andean plateau and bending of the Bolivian orocline (1988) J. Geophys. Res., Solid Earth (1978-2012), 93, pp. 3211-3231
  • Ishikawa, T., Nakamura, E., Boron isotope systematics of marine sediments (1993) Earth Planet. Sci. Lett., 117, pp. 567-580
  • Ishikawa, T., Tera, F., Source, composition and distribution of the fluid in the Kurile mantle wedge: constraints from across-arc variations of B/Nb and B isotopes (1997) Earth Planet. Sci. Lett., 152, pp. 123-138
  • Ishikawa, T., Tera, F., Two isotopically distinct fluid components involved in the Mariana arc: evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematics (1999) Geology, 27, pp. 83-86
  • Ishikawa, T., Tera, F., Nakazawa, T., Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc (2001) Geochim. Cosmochim. Acta, 65, pp. 4523-4537
  • Iyer, K., Rüpke, L.H., Morgan, J.P., Feedbacks between mantle hydration and hydrothermal convection at ocean spreading centers (2010) Earth Planet. Sci. Lett., 296, pp. 34-44
  • James, D.E., A combined O, Sr, Nd, and Pb isotopic and trace element study of crustal contamination in central Andean lavas, I: local geochemical variations (1982) Earth Planet. Sci. Lett., 57, pp. 47-62
  • Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., (2008) Hole-filled SRTM for the globe Version 4., , Available from the CGIAR-CSI SRTM 90m Database
  • Jones, R.E., (2014) Subduction zone processes and continental crust formation in the southern Central Andes: insights from geochemistry and geochronology, , School of GeoSciences, The University of Edinburgh, Edinburgh
  • Jordan, T., Allmendinger, R., Damanti, J., Drake, R., Chronology of motion in a complete thrust belt: the Precordillera, 30-31 S, Andes Mountains (1993) J. Geol., pp. 135-156
  • Jordán, T.E., Isacks, B.L., Allmendinger, R.W., Brewer, J.A., Ramos, V.A., Ando, C.J., Andean tectonics related to geometry of subducted Nazca plate (1983) Geol. Soc. Am. Bull., 94, pp. 341-361
  • Jordon, T.E., Burns, W.M., Veiga, R., Pángaro, F., Copeland, P., Kelley, S., Mpodozis, C., Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes (2001) Tectonics, 20, pp. 308-324
  • Kasemann, S., Erzinger, J., Franz, G., Boron recycling in the continental crust of the central Andes from the Palaeozoic to Mesozoic, NW Argentina (2000) Contrib. Mineral. Petrol., 140, pp. 328-343
  • Kay, S.M., Abbruzzi, J.M., Magmatic evidence for Neogene lithospheric evolution of the central Andean "flat slab" between 30°S and 32°S (1996) Tectonophysics, 259, pp. 15-28
  • Kay, S.M., Godoy, E., Kurtz, A., Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes (2005) Geol. Soc. Am. Bull., 117, pp. 67-88
  • Kay, S.M., Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Probing the evolving Andean lithosphere: Mid-Late Tertiary magmatism in Chile (29°-30°30'S) over the modern zone of subhorizontal subduction (1987) J. Geophys. Res., 92, pp. 6173-6189
  • Kay, S.M., Mpodozis, C., Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat slab (2002) J. South Am. Earth Sci., 15, pp. 39-57
  • Kay, S.M., Mpodozis, C., Ramos, V.A., Munizaga, F., Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and the thickening crust in the central Andes (28-33°S) (1991) Spec. Pap., Geological Society of America Bulletin, vol. 265, pp. 113-137
  • Kilian, R., Behrmann, J.H., Geochemical constraints on the sources of Southern Chile Trench sediments and their recycling in arc magmas of the Southern Andes (2003) J. Geol. Soc., 160, pp. 57-70
  • King, R.L., Bebout, G.E., Grove, M., Moriguti, T., Nakamura, E., Boron and lead isotope signatures of subduction-zone mélange formation: hybridization and fractionation along the slab-mantle interface beneath volcanic arcs (2007) Chem. Geol., 239, pp. 305-322
  • Kopp, H., Flueh, E.R., Papenberg, C., Klaeschen, D., Seismic investigations of the O'Higgins Seamount Group and Juan Fernández Ridge: aseismic ridge emplacement and lithosphere hydration (2004) Tectonics, 23
  • Leeman, W.P., Tonarini, S., Chan, L.H., Borg, L.E., Boron and lithium isotopic variations in a hot subduction zone-the southern Washington Cascades (2004) Chem. Geol., 212, pp. 101-124
  • Litvak, V.D., Poma, S., Geochemistry of mafic Paleocene volcanic rocks in the Valle del Cura region: implications for the petrogenesis of primary mantle-derived melts over the Pampean flat-slab (2010) J. South Am. Earth Sci., 29, pp. 705-716
  • Litvak, V.D., Poma, S., Kay, S.M., Paleogene and Neogene magmatism in the Valle del Cura region: new perspective on the evolution of the Pampean flat slab, San Juan province, Argentina (2007) J. South Am. Earth Sci., 24, pp. 117-137
  • Lonsdale, P., Creation of the Cocos and Nazca plates by fission of the Farallon plate (2005) Tectonophysics, 404, pp. 237-264
  • Lucassen, F., Escayola, M., Romer, R.L., Viramonte, J., Koch, K., Franz, G., Isotopic composition of Late Mesozoic basic and ultrabasic rocks from the Andes (23-32 S)-implications for the Andean mantle (2002) Contrib. Mineral. Petrol., 143, pp. 336-349
  • Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Las unidades volcánicas y plutónicas del Cenozoico superior en la Alta Cordilera del Norte Chico (29°-31°S): Geología, Alteración hidrotermal y Mineralización (1984) Rev. Geol. Chile, 11, pp. 12-51
  • Manea, V.C., Pérez-Gussinyé, M., Manea, M., Chilean flat slab subduction controlled by overriding plate thickness and trench rollback (2012) Geology, 40, pp. 35-38
  • Marot, M., Monfret, T., Pardo, M., Ranalli, G., Nolet, G., A double seismic zone in the subducting Juan Fernandez Ridge of the Nazca Plate (32°S), central Chile (2013) J. Geophys. Res., Solid Earth, 118, pp. 3462-3475
  • Marschall, H.R., Altherr, R., Kalt, A., Ludwig, T., Detrital, metamorphic and metasomatic tourmaline in high-pressure metasediments from Syros (Greece): intra-grain boron isotope patterns determined by secondary-ion mass spectrometry (2008) Contrib. Mineral. Petrol., 155, pp. 703-717
  • Marschall, H.R., Schumacher, J.C., Arc magmas sourced from melange diapirs in subduction zones (2012) Nat. Geosci., 5, pp. 862-867
  • McGeary, S., Nur, A., Ben-Avraham, Z., Spatial gaps in arc volcanism: the effect of collision or subduction of oceanic plateaus (1985) Tectonophysics, 119, pp. 195-221
  • Melson, W.G., Thompson, G., Petrology of a transform fault zone and adjacent ridge segments (1971) Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci., 268, pp. 423-441
  • Moran, A.E., Sisson, V.B., Leeman, W.P., Boron depletion during progressive metamorphism: implications for subduction processes (1992) Earth Planet. Sci. Lett., 111, pp. 331-349
  • Oncken, O., Hindle, D., Kley, J., Elger, K., Victor, P., Schemmann, K., Deformation of the central Andean upper plate system-facts, fiction, and constraints for plateau models (2006) The Andes, pp. 3-27. , Springer
  • Pabst, S., Zack, T., Savov, I.P., Ludwig, T., Rost, D., Tonarini, S., Vicenzi, E.P., The fate of subducted oceanic slabs in the shallow mantle: insights from boron isotopes and light element composition of metasomatized blueschists from the Mariana forearc (2012) Lithos, pp. 162-179
  • Palmer, M., Boron-isotope systematics of Halmahera arc (Indonesia) lavas: evidence for involvement of the subducted slab (1991) Geology, 19, pp. 215-217
  • Parada, M.A., Rivano, S., Sepulveda, P., Herve, M., Herve, F., Puig, A., Munizaga, F., Snelling, N., Mesozoic and Cenozoic plutonic development in the Andes of central Chile (30°30'-32°30'S) (1988) J. South Am. Earth Sci., 1, pp. 249-260
  • Pardo Casas, F., Molnar, P., Relative motion of the Nazca (Farallón) and South America plates since Late Cretaceous time (1987) Tectonics, 6, pp. 233-248
  • Peacock, S.A., Fluid processes in subduction zones (1990) Science, 248, pp. 329-337
  • Peacock, S.M., Hervig, R.L., Boron isotopic composition of subduction-zone metamorphic rocks (1999) Chem. Geol., 160, pp. 281-290
  • Pilger, R.H., Plate reconstructions, aseismic ridges, and low angle subduction beneath the Andes (1981) Geol. Soc. Am. Bull., 92, pp. 448-456
  • Pilger, R.H., Cenozoic plate kinematics, subduction and magmatism: South American Andes (1984) J. Geol. Soc. Lond., 141, pp. 793-802
  • Ramos, V.A., Cristallini, E.O., Pérez, D.J., The Pampean flat-slab of the Central Andes (2002) J. South Am. Earth Sci., 15, pp. 59-78
  • Ramos, V.A., Folguera, A., Andean flat-slab subduction through time (2009) Geological Society, London, Special Publications, vol. 327, pp. 31-54
  • Ramos, V.A., Kay, S.M., Page, R., Munizaga, F., La ignimbrita Vacas Heladas y el cese del volcanismo en el Valle del Cura, Provincia de San Juan (1989) Rev. Asoc. Geol. Argent., 44, pp. 336-352
  • Ranero, C., Morgan, J.P., McIntosh, K., Reichert, C., Bending-related faulting and mantle serpentinization at the Middle America trench (2003) Nature, 425, pp. 367-373
  • Ranero, C.R., Sallarès, V., Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench (2004) Geology, 32, pp. 549-552
  • Reiners, P.W., Nelson, B.K., Ghiorso, M.S., Assimilation of felsic crust by basaltic magma: thermal limits and extents of crustal contamination of mantle-derived magmas (1995) Geology, 23, pp. 563-566
  • Rosner, M., Erzinger, J., Franz, G., Trumbull, R.B., Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence from boron isotope fractination during progressive slab dehydration (2003) Geochem. Geophys. Geosyst., 4
  • Rüpke, L.H., Morgan, J.P., Hort, M., Connolly, J.A.D., Serpentine and the subduction zone water cycle (2004) Earth Planet. Sci. Lett., 223, pp. 17-34
  • Rutland, R.W.R., Andean orogeny and ocean floor spreading (1971) Nature, 233, pp. 252-255
  • Ryan, J.G., Chauvel, C., 3.13-the subduction-zone filter and the impact of recycled materials on the evolution of the mantle (2014) Treatise on Geochemistry, pp. 479-508. , Elsevier, Oxford, H.D. Holland, K.K. Turekian (Eds.)
  • Ryan, J.G., Leeman, W.P., Morris, J.D., Langmuir, C.H., The boron systematics of intraplate lavas: implications for crust and mantle evolution (1996) Geochim. Cosmochim. Acta, 60, pp. 415-422
  • Ryan, J.G., Morris, J.D., Tera, F., Leeman, W.P., Tsuetkov, A., Cross-arc geochemical variations in the Kurile arc as a function of slab depth (1995) Science, 270, pp. 625-627
  • Savov, I.P., Ryan, J.G., D'Antonio, M., Fryer, P., Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana fore arc (2007) J. Geophys. Res., Solid Earth, 112, p. B09205
  • Schiano, P., Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals (2003) Earth-Sci. Rev., 63, pp. 121-144
  • Schmitt, A.K., Kasemann, S., Meixner, A., Rhede, D., Boron in central Andean ignimbrites: implications for crustal boron cycles in active continental margin (2002) Chem. Geol., 183, pp. 333-347
  • Scholl, D.W., Christensen, M.N., Von Huene, R., Marlow, M.S., Peru-Chile trench sediments and sea-floor spreading (1970) Geol. Soc. Am. Bull., 81, pp. 1339-1360
  • Silver, P.G., Russo, R.M., Lithgow-Bertelloni, C., Coupling of South American and African plate motion and plate deformation (1998) Science, 279, pp. 60-63
  • Smith, H.J., Leeman, W.P., Davidson, J., Spivack, A.J., The B isotopic composition of arc lavas from Martinique, Lesser Antilles (1997) Earth Planet. Sci. Lett., 146, pp. 303-314
  • Smith, H.J., Spivack, A.J., Staudigel, H., Hart, S.R., The boron isotopic composition of altered oceanic crust (1995) Chem. Geol., 126, pp. 119-135
  • Sobolev, A.V., Melt inclusions in minerals as a source of principle petrological information (1996) Petrology, 4, pp. 209-220
  • Somoza, R., Updated azca (Farallon)-South America relative motions during the last 40 My: implications for mountain building in the central Andean region (1998) J. South Am. Earth Sci., 11, pp. 211-215
  • Somoza, R., Ghidella, M.E., Late Cretaceous to recent plate motions in western South America revisited (2012) Earth Planet. Sci. Lett., pp. 152-163
  • Spandler, C., Pirard, C., Element recycling from subducting slabs to arc crust: a review (2013) Lithos, pp. 208-223
  • Spivack, A.J., Edmond, J.M., Boron isotope exchenge between seawater and the oceanic crust (1987) Geochim. Cosmochim. Acta, 51, pp. 1033-1043
  • Stern, C.R., Role of subduction erosion in the generation of Andean magmas (1991) Geology, 19, pp. 78-81
  • Stern, C.R., Active Andean volcanism: its geologic and tectonic setting (2004) Rev. Geol. Chile, 31, pp. 161-206
  • Straub, S.M., Layne, G.D., The systematics of boron isotopes in Izu arc front volcanic rocks (2002) Earth Planet. Sci. Lett., 198, pp. 25-39
  • Syracuse, E.M., van Keken, P.E., Abers, G.A., The global range of subduction zone thermal models (2010) Phys. Earth Planet. Inter., 183, pp. 73-90
  • Thornburg, T.M., Kulm, L.D., Sedimentation in the Chile Trench: depositional morphologies, lithofacies, and stratigraphy (1987) Geol. Soc. Am. Bull., 98, pp. 33-52
  • Thornburg, T.M., Kulm, L.D., Sedimentation in the Chile Trench: petrofacies and provenance (1987) J. Sediment. Res., 57, pp. 55-74
  • Tonarini, S., Leeman, W.P., Leat, P.T., Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: evidence from boron isotope systematics (2011) Earth Planet. Sci. Lett., 301, pp. 275-284
  • Trumbull, R.B., Riller, U., Oncken, O., Scheuber, E., Munier, K., Hongn, F., The time-space distribution of Cenozoic Volcanism in the South-Central Andes: a new data compilation and some tectonic implications (2006) The Andes - Active Subduction Orogeny, pp. 29-43. , Springer-Verlag, O. Oncken, G. Chong, G. Franz, P. Giese, H.-J. Götze, V.A. Ramos, M.R. Strecker, P. Wigger (Eds.)
  • Ulmer, P., Trommsdorff, V., Serpentine stability to mantle depths and subduction-related magmatism (1995) Science, 268, pp. 858-861
  • van Hunen, J., Van Den Berg, A.P., Vlaar, N.J., On the role of subducting oceanic plateaus in the development of shallow flat subduction (2002) Tectonophysics, 352, pp. 317-333
  • van Keken, P.E., Hacker, B.R., Syracuse, E.M., Abers, G.A., Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide (2011) J. Geophys. Res., Solid Earth (1978-2012), p. 116
  • Vils, F., Müntener, O., Kalt, A., Ludwig, T., Implications of the serpentine phase transition on the behaviour of beryllium and lithium-boron of subducted ultramafic rocks (2011) Geochim. Cosmochim. Acta, 75, pp. 1249-1271
  • Vils, F., Tonarini, S., Kalt, A., Seitz, H.-M., Boron, lithium and strontium isotopes as tracers of seawater-serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209 (2009) Earth Planet. Sci. Lett., 286, pp. 414-425
  • Von Huene, R., Scholl, D.W., Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust (1991) Rev. Geophys., 29
  • Winocur, D., Litvak, V., Ramos, V., Magmatic and tectonic evolution of the Oligocene Valle del Cura basin, main Andes of Argentina and Chile: evidence for generalized extension (2014) Geological Society, London, Special Publications, vol. 399, p. 392. , SP399
  • Wittenbrink, J., Lehmann, B., Wiedenbeck, M., Wallianos, A., Dietrich, A., Palacios, C., Boron isotope composition of melt inclusions from porphyry systems of the Central Andes: a reconnaissance study (2009) Terra Nova, 21, pp. 111-118
  • Workman, R.K., Hart, S.R., Major and trace element composition of the depleted MORB mantle (DMM) (2005) Earth Planet. Sci. Lett., 231, pp. 53-72
  • Wunder, B., Wirth, R., Gottschalk, M., Antigorite pressure and temperature dependence of polysomatism and water content (2001) Eur. J. Mineral., 13, pp. 485-496
  • Yamaoka, K., Ishikawa, T., Matsubaya, O., Ishiyama, D., Nagaishi, K., Hiroyasu, Y., Chiba, H., Kawahata, H., Boron and oxygen isotope systematics for a complete section of oceanic crustal rocks in the Oman ophiolite (2012) Geochim. Cosmochim. Acta, 84, pp. 543-559
  • Yamaoka, K., Matsukura, S., Ishikawa, T., Kawahata, H., Boron contents and isotope compositions of oceanic crusts from the Oman and Troodos ophiolites (2011) AGU Fall Meeting Abstracts, p. 1484
  • Yañez, G.A., Cembrano, J., Pardo, M., Ranero, C.R., Selles, D., The Challenger - Juan Fernández - Maipo major tectonic transition of the Nazca - Andean subduction system at 33-34°S: geodynamic evidence and implications (2002) J. South Am. Earth Sci., 15, pp. 28-38
  • Yañez, G.A., Ranero, C.R., von Huene, R., Díaz, J., Magnetic anomaly interpretation across the southern central Andes (32°-34°S): the role of the Juan Fernández Ridge in the late Tertiary evolution of the margin (2001) J. Geophys. Res., 106, pp. 6325-6345
  • You, C.F., Castillo, P.R., Gieskes, J.M., Chan, L.H., Spivack, A.J., Trace element behavior in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones (1996) Earth Planet. Sci. Lett., 140, pp. 41-52
  • You, C.F., Spivack, A.J., Gieskes, J.M., Rosenbauer, R., Bischoff, J.L., Experimental study of boron geochemistry: implications for fluid processes in subduction zones (1995) Geochim. Cosmochim. Acta, 59, pp. 2435-2442

Citas:

---------- APA ----------
Jones, R.E., De Hoog, J.C.M., Kirstein, L.A., Kasemann, S.A., Hinton, R., Elliott, T. & Litvak, V.D. (2014) . Temporal variations in the influence of the subducting slab on Central Andean arc magmas: Evidence from boron isotope systematics. Earth and Planetary Science Letters, 408, 390-401.
http://dx.doi.org/10.1016/j.epsl.2014.10.004
---------- CHICAGO ----------
Jones, R.E., De Hoog, J.C.M., Kirstein, L.A., Kasemann, S.A., Hinton, R., Elliott, T., et al. "Temporal variations in the influence of the subducting slab on Central Andean arc magmas: Evidence from boron isotope systematics" . Earth and Planetary Science Letters 408 (2014) : 390-401.
http://dx.doi.org/10.1016/j.epsl.2014.10.004
---------- MLA ----------
Jones, R.E., De Hoog, J.C.M., Kirstein, L.A., Kasemann, S.A., Hinton, R., Elliott, T., et al. "Temporal variations in the influence of the subducting slab on Central Andean arc magmas: Evidence from boron isotope systematics" . Earth and Planetary Science Letters, vol. 408, 2014, pp. 390-401.
http://dx.doi.org/10.1016/j.epsl.2014.10.004
---------- VANCOUVER ----------
Jones, R.E., De Hoog, J.C.M., Kirstein, L.A., Kasemann, S.A., Hinton, R., Elliott, T., et al. Temporal variations in the influence of the subducting slab on Central Andean arc magmas: Evidence from boron isotope systematics. Earth Plan. Sci. Lett. 2014;408:390-401.
http://dx.doi.org/10.1016/j.epsl.2014.10.004