Artículo

Schmidt, S.; Hetzel, R.; Kuhlmann, J.; Mingorance, F.; Ramos, V.A. "A note of caution on the use of boulders for exposure dating of depositional surfaces" (2011) Earth and Planetary Science Letters. 302(1-2):60-70
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Exposure dating of boulders has been widely applied to determine the age of depositional surfaces under the assumption that the pre-depositional nuclide component in most boulders is negligible. Here we present a case study on fluvial terraces at the active mountain front of the eastern Andes, where this assumption is clearly invalid, because sandstone boulders (n=13) from terraces at two sites contain a highly variable inherited 10Be component and have apparent 10Be ages that exceed the age of the respective surface by up to ~90ka. Likewise, boulders from active stream channels (n=5) contain a substantial inherited 10Be component, equivalent to 5-48ka of exposure. The age of the fluvial terraces is well determined by two approaches that allow to correct for the pre-depositional nuclide component: 10Be dating of amalgamated pebbles and 10Be depth profiles on sand samples. At site 1, three terraces have 10Be ages of 3-5ka (T2), 11-13ka (T3), and 16-20ka (T4), which are consistent with the terrace stratigraphy. The age of terrace T3 is confirmed by a calibrated 14C age of 12.61±0.20ka BP obtained from a wood sample. At site 2, terrace T3 has a 10Be age of 13-16ka. The average inherited 10Be concentration of sand grains - determined from depth profiles and stream sediments - is small and equivalent to 1-3ka of exposure. In contrast, the mean inheritance of pebbles and boulders is higher and equivalent to exposure times of ~10ka and ~30ka, respectively. These differences in the pre-depositional nuclide component are related to the different provenance and transport history of sand, pebbles, and boulders. The sand is derived from rapidly eroding Miocene sediments exposed near the mountain front, whereas the pebbles and boulders originate from Triassic sandstones in the internal part of the fold-and-thrust belt. On their way to the mountain front, boulders and pebbles were temporarily stored and irradiated in alluvial fans that are currently reworked. As sediment deposition in intramontane basins and their subsequent excavation is common in the Andes and other fold-and-thrust belts, the presence of pre-depositional nuclide components should be evaluated when applying exposure dating at active mountain fronts. © 2010 Elsevier B.V.

Registro:

Documento: Artículo
Título:A note of caution on the use of boulders for exposure dating of depositional surfaces
Autor:Schmidt, S.; Hetzel, R.; Kuhlmann, J.; Mingorance, F.; Ramos, V.A.
Filiación:Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 24, Münster, 48149, Germany
Instituto de Mecánica Estructural y Riesgo Sísmico, Universidad Nacional de Cuyo, Casilla de Correo 405, Correo Central, Mendoza, 5500, Argentina
Laboratorio de Tectónica Andina, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, Buenos Aires, 1428, Argentina
Palabras clave:10Be exposure dating; Amalgamation approach; Andean Precordillera; Fluvial terraces; Inherited nuclide component; 10Be exposure dating; Amalgamation approach; Andean Precordillera; Fluvial terraces; Inherited nuclide component; Hydraulics; Isotopes; Metals; Sand; Sandstone; Sedimentology; Soil conservation; Stratigraphy; Structural geology; Tectonics; Landforms; age determination; boulder; dating method; deposition; depositional environment; intramontane basin; provenance; sandstone; sediment transport; stratigraphy; terrace; Andes
Año:2011
Volumen:302
Número:1-2
Página de inicio:60
Página de fin:70
DOI: http://dx.doi.org/10.1016/j.epsl.2010.11.039
Título revista:Earth and Planetary Science Letters
Título revista abreviado:Earth Plan. Sci. Lett.
ISSN:0012821X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0012821X_v302_n1-2_p60_Schmidt

Referencias:

  • Ahumada, E.A., Costa, C.H., Antithetic linkage between oblique Quaternary thrusts at the Andean front, Argentine Precordillera (2009) J. South Am. Earth Sci., 28, pp. 207-216
  • Ahumada, E., Costa, C.H., Gardini, C.E., Diederix, H., La estructura del extremo sur de la Sierra de Las Peñas-Las Higueras, Precordillera de Mendoza (2006) Assoc. Geol. Arg., 6, pp. 11-17. , (in Spanish)
  • Anderson, R.S., Repka, J.L., Dick, G.S., Explicit treatment of inheritance in dating depositional surfaces using in situ 10Be and 26Al (1996) Geology, 24, pp. 47-51
  • Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements (2008) Quat. Geochron., 3, pp. 174-195
  • Beer, J.A., Allmendinger, R.W., Figueroa, D.E., Jordan, T.E., Seismic stratigraphy of a Neogene piggyback basin, Argentina (1990) Am. Assoc. Petrol. Geol. Bull., 74, pp. 1183-1202
  • Bierman, P.R., Gillespie, A.R., Caffee, M.W., Cosmogenic ages for earthquake recurrence intervals and debris flow fan deposition, Owens Valley, California (1995) Science, 270, pp. 447-450
  • Braucher, R., Del Castillo, P., Siame, L., Hidy, A.J., Bourlès, D.L., Determination of both exposure time and denudation rate from an in situ-produced 10Be depth profile: a mathematical proof of uniqueness. Model sensitivity and applications to natural cases (2009) Quat. Geochron., 4, pp. 56-67
  • Breed, C.S., McCauley, J.F., Whitney, M.I., Wind erosion forms (1997) Arid zone Geomorphology, pp. 437-464. , Belhaven Press, London, D. Thomas (Ed.)
  • Brown, E.T., Bendick, R., Bourlès, D.L., Gaur, V., Molnar, P., Raisbeck, G.M., Yiou, F., Slip rates of the Karakorum fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines (2002) J. Geophys. Res., 107 (B9), p. 2192
  • Burbank, D., Meigs, A., Brozovic, N., Interactions of growing folds and coeval depositional systems (1996) Basin Res., 8, pp. 199-223
  • Chmeleff, J., von Blanckenburg, F., Kossert, K., Jakob, D., Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting (2010) Nucl. Instr. Meth. B, 268, pp. 192-199
  • Cooke, R.U., Warren, A., (1973) Geomorphology in Deserts, , Batsford, London
  • Costa, C.H., Gardini, C.E., Diederix, H., Cortés, J.M., The Andean orogenic front at Sierra de Las Peñas-Las Higueras, Mendoza, Argentina (2000) J. South Am. Earth Sci., 13, pp. 287-292
  • Dühnforth, M., Densmore, A.L., Ivy-Ochs, S., Allen, P.A., Kubik, P.W., Timing and patterns of debris flow deposition on Shepherd and Symmes creek fans, Owens Valley, California, deduced from cosmogenic 10Be (2007) J. Geophys. Res., 112, pp. F03S15
  • Dunai, T.J., Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides (2001) Earth Planet. Sci. Lett., 193, pp. 197-212
  • Goethals, M.M., Hetzel, R., Niedermann, S., Wittmann, H., Fenton, C.R., Kubik, P.W., Christl, M., von Blanckenburg, F., An improved experimental determination of cosmogenic 10Be/21Ne and 26Al/21Ne production ratios in quartz (2009) Earth Planet. Sci. Lett., 284, pp. 187-198
  • Gold, R.D., Cowgill, E., Arrowsmith, J.R., Gosse, J., Chen, X., Wang, X.-F., Riser diachroneity, lateral erosion, and uncertainty in rates of strikeslip faulting: a case study from Tuzidun along the Altyn Tagh Fault, NW China (2009) J. Geophys. Res., 114, pp. B04401
  • Gosse, J.C., Phillips, F.M., Terrestrial in situ cosmogenic nuclides: theory and application (2001) Quat. Sci. Rev., 20, pp. 1475-1560
  • Goudie, A.S., Wilkinson, J., (1977) The Warm Desert Environment, , Cambridge University Press, Cambridge
  • Guralnik, B., Matmon, A., Avni, Y., Porat, N., Fink, D., Constraining the evolution of river terraces with integrated OSL and cosmogenic nuclide data (2011) Quat. Geochron., 6, pp. 22-32
  • Hancock, G.S., Anderson, R.S., Chadwick, O.A., Finkel, R.C., Dating fluvial terraces with 10Be and 26Al profiles: application to the Wind River, Wyoming (1999) Geomorphology, 27, pp. 41-60
  • Hein, A.S., Hulton, N.R.J., Dunai, T.J., Schnabel, C., Kaplan, M.R., Naylor, M., Xu, S., Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels (2009) Earth Planet. Sci. Lett., 286, pp. 184-197
  • Hetzel, R., Niedermann, S., Tao, M.X., Kubik, P.W., Ivy-Ochs, S., Gao, B., Strecker, M.R., Low slip rates and long-term preservation of geomorphic features in Central Asia (2002) Nature, 417, pp. 428-432
  • Hetzel, R., Niedermann, S., Tao, M.X., Kubik, P.W., Strecker, M.R., Climatic versus tectonic control on river incision at the margin of NE Tibet: 10Be exposure dating of river terraces at the mountain front of the Qilian Shan (2006) J. Geophys. Res., 111, pp. F03012
  • Hilley, G.E., Strecker, M.R., Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina (2005) Geol. Soc. Am. Bull., 117, pp. 887-901
  • Hofmann, H., Beer, J., Bonani, G., von Gunten, H.R., Raman, S., Suter, M., Walker, R.L., Zimmermann, D., 10Be: half-life and AMS standards (1987) Nucl. Instr. Meth. B, 29, pp. 32-36
  • Kaplan, M.R., Schaefer, J.M., Denton, G.H., Barrell, D.J.A., Chinn, T.J.H., Putnam, A.E., Andersen, B.G., Doughty, A.M., Glacier retreat in New Zealand during the Younger Dryas stadial (2010) Nature, 467, pp. 194-197
  • Kirby, E., Burbank, D.W., Reheis, M., Phillips, F., Temporal variations in slip rate of the White Mountain Fault Zone, Eastern California (2006) Earth Planet. Sci. Lett., 248, pp. 168-185
  • Kleinert, K., Strecker, M.R., Climate change in response to orographic barrier uplift: Paleosol and stable isotope evidence from the late Neogene Santa María basin, northwestern Argentina (2001) Geol. Soc. Am. Bull., 113, pp. 728-742
  • Kohl, C.P., Nishiizumi, K., Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides (1992) Geochim. Cosmochim. Acta, 56, pp. 3583-3587
  • Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Remmert, A., A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting (2010) Nucl. Instr. Meth. B, 268, pp. 187-191
  • Kubik, P.W., Christl, M., 10Be and 26Al measurements at the Zurich 6 MV Tandem AMS facility (2010) Nucl. Instr. Meth. B, 268, pp. 880-883
  • Lal, D., Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models (1991) Earth Planet. Sci. Lett., 104, pp. 424-439
  • Le Dortz, K., Meyer, B., Sébrier, M., Nazari, H., Braucher, R., Fattahi, M., Benedetti, L., Ghoraishi, M., Holocene right-slip rate determined by cosmogenic and OSL dating on the Anar fault, Central Iran (2009) Geophys. J. Int., 179, pp. 700-710
  • Matmon, A., Schwartz, D.P., Finkel, R., Clemmens, S., Hanks, T., Dating offset fans along the Mojave section of the San Andreas fault using cosmogenic 26Al and 10Be (2005) Geol. Soc. Am. Bull., 117, pp. 795-807
  • Matmon, A., Nichols, K., Finkel, R., Isotopic insights into smoothening of abandoned fan surfaces, southern California (2006) Quat. Res., 66, pp. 109-118
  • Matmon, A., Simhai, O., Amit, R., Haviv, I., Porat, N., McDonald, E., Benedetti, L., Finkel, R., Desert pavement-coated surfaces in extreme deserts present the longest-lived landforms on Earth (2009) Geol. Soc. Am. Bull., 121, pp. 688-697
  • McFadden, L.D., Wells, S.G., Jercinovich, M.J., Influences of eolian and pedogenic processes on the origin and evolution of desert pavements (1987) Geology, 15, pp. 504-508
  • Mériaux, A.-S., Tapponnier, P., Ryerson, F.J., Xu, X.W., King, G., van der Woerd, J., Finkel, R.C., Chen, W.B., The Aksay segment of the northern Altyn Tagh fault: tectonic geomorphology, landscape evolution, and Holocene slip rate (2005) J. Geophys. Res., 110, pp. B04404
  • Mériaux, A.-S., Sieh, K., Finkel, R.C., Rubin, C.M., Taylor, M.H., Meltzner, A.J., Ryerson, F.J., Kinematic behavior of southern Alaska constrained by westward decreasing postglacial slip rates on the Denali Fault, Alaska (2009) J. Geophys. Res., 114, pp. B03404
  • Meyer, H., Hetzel, R., Strauss, H., Erosion rates on different timescales derived from cosmogenic 10Be and river loads: implications for landscape evolution in the Rhenish Massif, Germany (2010) Int. J. Earth Sci., 99, pp. 395-412
  • Palumbo, L., Hetzel, R., Tao, M., Li, X., Guo, J., Deciphering the rate of mountain growth during topographic pre-steady state: an example from the NE margin of the Tibetan Plateau (2009) Tectonics, 28. , TC4017
  • Perg, L.A., Anderson, R.S., Finkel, R.C., Use of a new 10Be and 26Al inventory method to date marine terraces, Santa Cruz, California, USA (2001) Geology, 29, pp. 879-882
  • Phillips, F.M., Zreda, M.G., Gosse, J.C., Klein, J., Evenson, E.B., Hall, R.D., Chadwick, O.A., Sharma, P., Cosmogenic 36Cl and 10Be ages of Quaternary glacial and fluvial deposits of the Wind River Range, Wyoming (1997) Geol. Soc. Am. Bull., 109, pp. 1453-1463
  • Phillips, W.M., McDonald, E.V., Reneau, S.L., Poths, J., Dating soils and alluvium with cosmogenic 21Ne depth profiles: case studies from the Pajarito Plateau, New Mexico, USA (1998) Earth Planet. Sci. Lett., 160, pp. 209-223
  • Pratt, B., Burbank, D.W., Heimsath, A., Ojha, T., Impulsive alluviation during early Holocene strengthened monsoons, central Nepal Himalaya (2002) Geology, 30, pp. 911-914
  • Ramos, V.A., Cristallini, E.O., Pérez, D.J., The Pampean flat-slab of the Central Andes (2002) J. South Am. Earth Sci., 15, pp. 59-78
  • Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Weyhenmeyer, C.E., IntCal04 terrestrial radiocarbon age calibration, 0-26calkyr BP (2004) Radiocarbon, 46, pp. 1029-1058
  • Repka, J.L., Anderson, R.S., Finkel, R.C., Cosmogenic dating of fluvial terraces, Fremont River, Utah (1997) Earth Planet. Sci. Lett., 152, pp. 59-73
  • Ritz, J.F., Bourlès, D., Brown, E.T., Carretier, S., Chéry, J., Enhtuvshin, B., Galsan, P., Yiou, F., Late Pleistocene to Holocene slip rates for the Gurvan Bulag thrust fault (Gobi-Altay, Mongolia) estimated with 10Be dates (2003) J. Geophys. Res., 108 (B3), p. 2162
  • Schaefer, J.M., Denton, G.H., Kaplan, M., Putnam, A., Finkel, R.C., Barrell, D.J.A., Andersen, B.G., Schlüchter, C., High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature (2009) Science, 324, pp. 622-625
  • Schaller, M., von Blanckenburg, F., Hovius, N., Veldkamp, A., van den Berg, M.W., Kubik, P.W., Paleoerosion rates from cosmogenic 10Be in a 1.3Ma terrace sequence: response of the river Meuse to changes in climate and rock uplift (2004) J. Geol., 112, pp. 127-144
  • Schaller, M., Ehlers, T.A., Blum, J.D., Soil transport on a moraine foreslope (2010) Geomorphology, 115, pp. 117-128
  • Sepúlveda, E., (2001), Hoja Geológica 3369-II, Mendoza. Provincias de Mendoza y San Juan. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Boletín 252, Buenos Aires (in Spanish); Siame, L.L., Bourlès, D.L., Sébrier, M., Bellier, O., Castano, J.C., Araujo, M., Perez, M., Yiou, F., Cosmogenic dating ranging from 20 to 700ka of a series of alluvial fan surfaces affected by the El Tigre fault, Argentina (1997) Geology, 25, pp. 975-978
  • Siame, L., Bellier, O., Braucher, R., Sébrier, M., Cushing, M., Bourlès, D., Hamelin, B., Yiou, F., Local erosion rates versus active tectonics: cosmic ray exposure modelling in Provence (south-east France) (2004) Earth Planet. Sci. Lett., 220, pp. 345-364
  • Stone, J.O., Air pressure and cosmogenic isotope production (2000) J. Geophys. Res., 105, pp. 23753-23759
  • Stuiver, M., Reimer, P.J., Reimer, R., CALIB Radiocarbon Calibration, , http://www.radiocarbon.pa.qub.ac.uk/calib, (accessed February 2009)
  • van der Woerd, J., Ryerson, F.J., Tapponnier, P., Gaudemer, Y., Finkel, R., Mériaux, A.-S., Caffee, M., He, Q.L., Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China) (1998) Geology, 26, pp. 695-698
  • van der Woerd, J., Klinger, Y., Sieh, K., Tapponnier, P., Ryerson, F.J., Mériaux, A.-S., Long-term slip rate of the southern San Andreas Fault from 10Be - 26Al surface exposure dating of an offset alluvial fan (2006) J. Geophys. Res., 111, pp. B04407
  • Vergés, J., Ramos, V.A., Meigs, A., Cristallini, E., Bettini, F.H., Cortés, J.M., Crustal wedging triggering recent deformation in the Andean thrust front between 31°S and 33°S: Sierras Pampeanas-Precordillera interaction (2007) J. Geophys. Res., 112, pp. B03S15
  • Wells, S.G., McFadden, L.D., Poths, J., Olinger, C.T., Cosmogenic 3He surface-exposure dating of stone pavements: Implications for landscape evolution in deserts (1995) Geology, 23, pp. 613-616
  • Zehfuss, P.H., Bierman, P.R., Gillespie, A.R., Burke, R.M., Caffee, M.W., Slip rates on the Fish Springs fault, Owens Valley, California, deduced from cosmogenic 10Be and 26Al and soil development on fan surfaces (2001) Geol. Soc. Am. Bull., 113, pp. 241-255

Citas:

---------- APA ----------
Schmidt, S., Hetzel, R., Kuhlmann, J., Mingorance, F. & Ramos, V.A. (2011) . A note of caution on the use of boulders for exposure dating of depositional surfaces. Earth and Planetary Science Letters, 302(1-2), 60-70.
http://dx.doi.org/10.1016/j.epsl.2010.11.039
---------- CHICAGO ----------
Schmidt, S., Hetzel, R., Kuhlmann, J., Mingorance, F., Ramos, V.A. "A note of caution on the use of boulders for exposure dating of depositional surfaces" . Earth and Planetary Science Letters 302, no. 1-2 (2011) : 60-70.
http://dx.doi.org/10.1016/j.epsl.2010.11.039
---------- MLA ----------
Schmidt, S., Hetzel, R., Kuhlmann, J., Mingorance, F., Ramos, V.A. "A note of caution on the use of boulders for exposure dating of depositional surfaces" . Earth and Planetary Science Letters, vol. 302, no. 1-2, 2011, pp. 60-70.
http://dx.doi.org/10.1016/j.epsl.2010.11.039
---------- VANCOUVER ----------
Schmidt, S., Hetzel, R., Kuhlmann, J., Mingorance, F., Ramos, V.A. A note of caution on the use of boulders for exposure dating of depositional surfaces. Earth Plan. Sci. Lett. 2011;302(1-2):60-70.
http://dx.doi.org/10.1016/j.epsl.2010.11.039