For any finite group G, we construct a finite poset (or equivalently, a finite T0-space) X, whose group of automorphisms is isomorphic to G. If the order of the group is n and it has r generators, X has n (r + 2) points. This construction improves previous results by G. Birkhoff and M.C. Thornton. The relationship between automorphisms and homotopy types is also analyzed. © 2008 Elsevier B.V. All rights reserved.
Documento: | Artículo |
Título: | Automorphism groups of finite posets |
Autor: | Barmak, J.A.; Minian, E.G. |
Filiación: | Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina |
Palabras clave: | Automorphisms; Finite topological spaces; Posets; Automorphism groups; Automorphisms; Finite groups; Finite poset; Finite topological spaces; Group of automorphisms; Homotopy types; Posets |
Año: | 2009 |
Volumen: | 309 |
Número: | 10 |
Página de inicio: | 3424 |
Página de fin: | 3426 |
DOI: | http://dx.doi.org/10.1016/j.disc.2008.09.026 |
Título revista: | Discrete Mathematics |
Título revista abreviado: | Discrete Math |
ISSN: | 0012365X |
CODEN: | DSMHA |
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0012365X_v309_n10_p3424_Barmak |