A clique in a graph is a complete subgraph maximal under inclusion. The clique graph of a graph is the intersection graph of its cliques. A graph is self-clique when it is isomorphic to its clique graph. A circular-arc graph is the intersection graph of a family of arcs of a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. In this note, we describe all the self-clique Helly circular-arc graphs. © 2006 Elsevier B.V. All rights reserved.
Documento: | Artículo |
Título: | Self-clique Helly circular-arc graphs |
Autor: | Bonomo, F. |
Filiación: | Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina |
Palabras clave: | Helly circular-arc graphs; Self-clique graphs; Inclusions; Helly circular-arc graphs; Self-clique graphs; Graph theory |
Año: | 2006 |
Volumen: | 306 |
Número: | 6 |
Página de inicio: | 595 |
Página de fin: | 597 |
DOI: | http://dx.doi.org/10.1016/j.disc.2006.01.016 |
Handle: | http://hdl.handle.net/20.500.12110/paper_0012365X_v306_n6_p595_Bonomo |
Título revista: | Discrete Mathematics |
Título revista abreviado: | Discrete Math |
ISSN: | 0012365X |
CODEN: | DSMHA |
PDF: | https://bibliotecadigital.exactas.uba.ar/download/paper/paper_0012365X_v306_n6_p595_Bonomo.pdf |
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0012365X_v306_n6_p595_Bonomo |