Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A clique in a graph is a complete subgraph maximal under inclusion. The clique graph of a graph is the intersection graph of its cliques. A graph is self-clique when it is isomorphic to its clique graph. A circular-arc graph is the intersection graph of a family of arcs of a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. In this note, we describe all the self-clique Helly circular-arc graphs. © 2006 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Self-clique Helly circular-arc graphs
Autor:Bonomo, F.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Helly circular-arc graphs; Self-clique graphs; Inclusions; Helly circular-arc graphs; Self-clique graphs; Graph theory
Año:2006
Volumen:306
Número:6
Página de inicio:595
Página de fin:597
DOI: http://dx.doi.org/10.1016/j.disc.2006.01.016
Título revista:Discrete Mathematics
Título revista abreviado:Discrete Math
ISSN:0012365X
CODEN:DSMHA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_0012365X_v306_n6_p595_Bonomo.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0012365X_v306_n6_p595_Bonomo

Referencias:

  • Balakrishnan, R., Paulraja, P., Self-clique graphs and diameters of iterated clique graphs (1986) Util. Math., 29, pp. 263-268
  • Balconi, G., Caratterizzazione matriciale dei grafi autoduali (1979) Istit. Lombardo Accad. Sci. Lett. Rend. A, 113, pp. 360-365
  • Bandelt, H., Prisner, E., Clique graphs and Helly graphs (1991) J. Combin. Theory, Ser. B, 51, pp. 34-45
  • Bondy, A., Durán, G., Lin, M., Szwarcfiter, J., Self-clique graphs and matrix permutations (2003) J. Graph Theory, 44, pp. 178-192
  • Chen, B., Lih, K., Diameters of iterated clique graphs of chordal graphs (1990) J. Graph Theory, 14, pp. 391-396
  • Chia, G., On self-clique graphs with given clique sizes (2000) Discrete Math., 212, pp. 185-189
  • Durán, G., Lin, M., Clique graphs of Helly circular-arc graphs (2001) Ars Combin., 60, pp. 255-271
  • Escalante, F., Über iterierte clique-graphen (1973) Abh. Math. Semin. Univ. Hamb., 39, pp. 59-68
  • Golumbic, M., (1980) Algorithmic Graph Theory and Perfect Graphs, , Academic Press New York
  • Larrión, F., Neumann-Lara, V., A family of clique divergent graphs with linear growth (1997) Graphs Combin., 13, pp. 263-266
  • Larrión, F., Neumann-Lara, V., Pizaña, A., Porter, T., On self-clique graphs with prescribed clique sizes (2002) Congr. Numer., 157, pp. 173-182
  • Larrión, F., Neumann-Lara, V., Pizaña, A., Porter, T., A hierarchy of self-clique graphs (2004) Discrete Math., 282, pp. 193-208
  • Larrión, F., Pizaña, A., On hereditary Helly self-clique graphs (2005) Electron. Notes Discrete Math., 19, pp. 351-356

Citas:

---------- APA ----------
(2006) . Self-clique Helly circular-arc graphs. Discrete Mathematics, 306(6), 595-597.
http://dx.doi.org/10.1016/j.disc.2006.01.016
---------- CHICAGO ----------
Bonomo, F. "Self-clique Helly circular-arc graphs" . Discrete Mathematics 306, no. 6 (2006) : 595-597.
http://dx.doi.org/10.1016/j.disc.2006.01.016
---------- MLA ----------
Bonomo, F. "Self-clique Helly circular-arc graphs" . Discrete Mathematics, vol. 306, no. 6, 2006, pp. 595-597.
http://dx.doi.org/10.1016/j.disc.2006.01.016
---------- VANCOUVER ----------
Bonomo, F. Self-clique Helly circular-arc graphs. Discrete Math. 2006;306(6):595-597.
http://dx.doi.org/10.1016/j.disc.2006.01.016