Abstract:
A clique in a graph is a complete subgraph maximal under inclusion. The clique graph of a graph is the intersection graph of its cliques. A graph is self-clique when it is isomorphic to its clique graph. A circular-arc graph is the intersection graph of a family of arcs of a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. In this note, we describe all the self-clique Helly circular-arc graphs. © 2006 Elsevier B.V. All rights reserved.
Referencias:
- Balakrishnan, R., Paulraja, P., Self-clique graphs and diameters of iterated clique graphs (1986) Util. Math., 29, pp. 263-268
- Balconi, G., Caratterizzazione matriciale dei grafi autoduali (1979) Istit. Lombardo Accad. Sci. Lett. Rend. A, 113, pp. 360-365
- Bandelt, H., Prisner, E., Clique graphs and Helly graphs (1991) J. Combin. Theory, Ser. B, 51, pp. 34-45
- Bondy, A., Durán, G., Lin, M., Szwarcfiter, J., Self-clique graphs and matrix permutations (2003) J. Graph Theory, 44, pp. 178-192
- Chen, B., Lih, K., Diameters of iterated clique graphs of chordal graphs (1990) J. Graph Theory, 14, pp. 391-396
- Chia, G., On self-clique graphs with given clique sizes (2000) Discrete Math., 212, pp. 185-189
- Durán, G., Lin, M., Clique graphs of Helly circular-arc graphs (2001) Ars Combin., 60, pp. 255-271
- Escalante, F., Über iterierte clique-graphen (1973) Abh. Math. Semin. Univ. Hamb., 39, pp. 59-68
- Golumbic, M., (1980) Algorithmic Graph Theory and Perfect Graphs, , Academic Press New York
- Larrión, F., Neumann-Lara, V., A family of clique divergent graphs with linear growth (1997) Graphs Combin., 13, pp. 263-266
- Larrión, F., Neumann-Lara, V., Pizaña, A., Porter, T., On self-clique graphs with prescribed clique sizes (2002) Congr. Numer., 157, pp. 173-182
- Larrión, F., Neumann-Lara, V., Pizaña, A., Porter, T., A hierarchy of self-clique graphs (2004) Discrete Math., 282, pp. 193-208
- Larrión, F., Pizaña, A., On hereditary Helly self-clique graphs (2005) Electron. Notes Discrete Math., 19, pp. 351-356
Citas:
---------- APA ----------
(2006)
. Self-clique Helly circular-arc graphs. Discrete Mathematics, 306(6), 595-597.
http://dx.doi.org/10.1016/j.disc.2006.01.016---------- CHICAGO ----------
Bonomo, F.
"Self-clique Helly circular-arc graphs"
. Discrete Mathematics 306, no. 6
(2006) : 595-597.
http://dx.doi.org/10.1016/j.disc.2006.01.016---------- MLA ----------
Bonomo, F.
"Self-clique Helly circular-arc graphs"
. Discrete Mathematics, vol. 306, no. 6, 2006, pp. 595-597.
http://dx.doi.org/10.1016/j.disc.2006.01.016---------- VANCOUVER ----------
Bonomo, F. Self-clique Helly circular-arc graphs. Discrete Math. 2006;306(6):595-597.
http://dx.doi.org/10.1016/j.disc.2006.01.016