Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A Q-distributive lattice is an algebra (L, ∨, ∧, ∇, 0, 1) of type (2, 2, 1, 0, 0) such that (L, ∨, ∧, 0, 1) is a bounded distributive lattice and ∇ satisfies the equations ∇0 = 0, x ∧ ∇x = x, ∇(x ∨ y) = ∇x ∨ ∇y and ∇(x ∧ ∇y) = ∇x ∧ ∇y. The aim of this paper is to find, for each proper subvariety of the variety of Q-distributive lattices, an equation which determines it, relatively to the whole variety, as well as to give a characterization of the minimum number of variables needed in such equation.

Registro:

Documento: Artículo
Título:Equations in the theory of Q-distributive lattices
Autor:Petrovich, A.
Filiación:Departamento de Matemática, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Año:1997
Volumen:175
Número:1-3
Página de inicio:211
Página de fin:219
DOI: http://dx.doi.org/10.1016/S0012-365X(96)00151-3
Título revista:Discrete Mathematics
Título revista abreviado:Discrete Math
ISSN:0012365X
CODEN:DSMHA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0012365X_v175_n1-3_p211_Petrovich

Referencias:

  • Burris, S., Sankappanavar, H.P., (1981) A Course in Universal Algebra, , Springer, New York
  • Cignoli, R., Quantifiers on distributive lattices (1991) Discrete Math., 96, pp. 183-197
  • Cignoli, R., Petrovich, A., On the Minimum Number of Variables Needed to Characterize Some Subvarieties of a Congruence Distributive Variety, , to appear
  • Day, A., Splitting algebras and a weak notion of projectivity (1975) Algebra Universalis, 5, pp. 153-162
  • Jonsson, B., Algebras whose congruence lattices are distributive (1967) Math. Scand., 21, pp. 110-121
  • Lucas, Th., Equations in the theory of monadic algebras (1972) Proc. Amer. Math. Soc., 1 (31), pp. 239-244
  • McKenzie, R., Equational bases and non-modular lattice varieties (1972) Trans. Amer. Math. Soc., 174, pp. 1-43
  • Monk, J.D., On equational classes of algebraic versions of logic. I (1970) Math. Scand., 27, pp. 53-71

Citas:

---------- APA ----------
(1997) . Equations in the theory of Q-distributive lattices. Discrete Mathematics, 175(1-3), 211-219.
http://dx.doi.org/10.1016/S0012-365X(96)00151-3
---------- CHICAGO ----------
Petrovich, A. "Equations in the theory of Q-distributive lattices" . Discrete Mathematics 175, no. 1-3 (1997) : 211-219.
http://dx.doi.org/10.1016/S0012-365X(96)00151-3
---------- MLA ----------
Petrovich, A. "Equations in the theory of Q-distributive lattices" . Discrete Mathematics, vol. 175, no. 1-3, 1997, pp. 211-219.
http://dx.doi.org/10.1016/S0012-365X(96)00151-3
---------- VANCOUVER ----------
Petrovich, A. Equations in the theory of Q-distributive lattices. Discrete Math. 1997;175(1-3):211-219.
http://dx.doi.org/10.1016/S0012-365X(96)00151-3