A Q-distributive lattice is an algebra (L, ∨, ∧, ∇, 0, 1) of type (2, 2, 1, 0, 0) such that (L, ∨, ∧, 0, 1) is a bounded distributive lattice and ∇ satisfies the equations ∇0 = 0, x ∧ ∇x = x, ∇(x ∨ y) = ∇x ∨ ∇y and ∇(x ∧ ∇y) = ∇x ∧ ∇y. The aim of this paper is to find, for each proper subvariety of the variety of Q-distributive lattices, an equation which determines it, relatively to the whole variety, as well as to give a characterization of the minimum number of variables needed in such equation.
Documento: | Artículo |
Título: | Equations in the theory of Q-distributive lattices |
Autor: | Petrovich, A. |
Filiación: | Departamento de Matemática, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina |
Año: | 1997 |
Volumen: | 175 |
Número: | 1-3 |
Página de inicio: | 211 |
Página de fin: | 219 |
DOI: | http://dx.doi.org/10.1016/S0012-365X(96)00151-3 |
Título revista: | Discrete Mathematics |
Título revista abreviado: | Discrete Math |
ISSN: | 0012365X |
CODEN: | DSMHA |
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0012365X_v175_n1-3_p211_Petrovich |