Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The concentration and temperature dependence of the viscosity of supercooled polyol (sucrose, trehalose, glucose and glycerol) aqueous solutions was analyzed with the aim of finding simple and accurate correlation equations for the description of this transport property. Three different equations were examined and compared, two empirical equations and an equation derived from the Avramov-Milchev (AM) model. If a description of the viscosity temperature dependence is intended, the AM model gives the best representation of the experimental data with only two adjustable parameters, which have a clear physical meaning. However, if we focus on both, temperature and concentration dependence, the empirical equations are found to be superior to the AM model, except for the glycerol aqueous system. The AM model includes a parameter related to the system fragility, which was obtained for all the aqueous polyol mixtures previously mentioned as a function of concentration, and also for water-trehalose-sodium tetraborate mixtures as a function of the electrolyte content. The results show that the fragility parameter increases with polyol concentration in the series glycerol < glucose ~ sucrose. < trehalose, and that the addition of sodium tetraborate to aqueous trehalose solutions increases the fragility of the mixtures. Our results imply that the hypothesis relating the low fragility of the aqueous mixtures with their high cryo or dehydroprotection capabilities is not valid. © 2014 Elsevier Inc.

Registro:

Documento: Artículo
Título:Concentration and temperature dependence of the viscosity of polyol aqueous solutions
Autor:Longinotti, M.P.; Trejo González, J.A.; Corti, H.R.
Filiación:Departamento de Quimica Inorganica, Analítica y Química Física (DQIAQF), Instituto de Química Fisica de los Materiales, Medio Ambiente y Energia (INQUIMAE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avda. General Paz 1499, 1650 San Martín, Buenos Aires, Argentina
Palabras clave:Fragility; Polyol aqueous mixtures; Supercooled; Viscosity; borate sodium; glucose; glycerol; sucrose; trehalose; water; boric acid; cryoprotective agent; glucose; glycerol; polymer; polyol; solution and solubility; sucrose; trehalose; article; Avramov Milchev model; concentration response; controlled study; correlation analysis; fragility; mathematical analysis; mathematical parameters; physical parameters; priority journal; Raman spectrometry; temperature dependence; viscosity; algorithm; chemistry; cold; cryopreservation; freezing; procedures; solution and solubility; transition temperature; viscosity; Algorithms; Borates; Cold Temperature; Cryopreservation; Cryoprotective Agents; Freezing; Glucose; Glycerol; Polymers; Solutions; Sucrose; Transition Temperature; Trehalose; Viscosity; Water
Año:2014
Volumen:69
Número:1
Página de inicio:84
Página de fin:90
DOI: http://dx.doi.org/10.1016/j.cryobiol.2014.05.008
Título revista:Cryobiology
Título revista abreviado:Cryobiology
ISSN:00112240
CODEN:CRYBA
CAS:borate sodium, 12447-40-4, 1303-96-4, 1330-43-4, 1333-73-9, 32446-62-1, 61028-24-8; glucose, 50-99-7, 84778-64-3; glycerol, 56-81-5; sucrose, 122880-25-5, 57-50-1; trehalose, 99-20-7; water, 7732-18-5; boric acid, 10043-35-3, 11113-50-1, 11129-12-7, 14213-97-9; Borates; Cryoprotective Agents; Glucose; Glycerol; Polymers; polyol; sodium borate; Solutions; Sucrose; Trehalose; Water
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00112240_v69_n1_p84_Longinotti

Referencias:

  • Angell, C.A., Perspective on the glass transition (1988) J. Phys. Chem. Solids, 49, pp. 863-871
  • Angell, C.A., Liquid fragility and the glass transition in water and in aqueous solutions (2002) Chem. Rev., 102, pp. 2627-2650
  • Archer, D.G., Carter, R.W., Thermodynamic properties of the NaCl+H<inf>2</inf>O system.4. Heat capacities of H<inf>2</inf>O and NaCl (aq) in cold-stable and supercooled states (2000) J. Phys. Chem. B, 104, pp. 8563-8584
  • Avramov, I., Viscosity in disordered media (2005) J. Non-Cryst. Solids, 351, pp. 3163-3173
  • Avramov, I., Milchev, A., Effect of disorder on diffusion and viscosity in condensed systems (1988) J. Non-Cryst. Solids, 104, pp. 253-260
  • Branca, C., Magazú, S., Maisano, G., Migliardo, F., Migliardo, P., Romeo, G., α,α-Trehalose water solutions. 5. Hydration and viscosity in dilute and semidilute disaccharide solutions (2001) J. Phys. Chem. B, 105, pp. 10140-10145
  • Branca, C., Magazú, S., Maisano, G., Migliardo, P., Villari, V., Sokolov, A.P., The fragile character and structure breaker role of alpha, alpha-trehalose: viscosity and Raman scattering findings (1999) J. Phys.: Condens. Matter, 11, pp. 3823-3832
  • Chan, R.K., Pathamanathan, K., Johari, G.P., Dielectric relaxations in the liquid and glassy states of glucose and its water mixtures (1986) J. Phys. Chem., 90, pp. 6358-6362
  • Chen, Y.J., Xuan, X.P., Zhang, H.H., Zhuo, K.L., Conductivities of 1-alkyl-3-methylimidazolim chloride ionic liquids in monosaccharide+water solutions at 298.15K (2012) Fluid Phase Equilib., 316, pp. 164-171
  • Comesaña, J., Otero, J.J., García, E., Correa, A., Densities and viscosities of ternary systems of water+glucose+sodium chloride at several temperatures (2003) J. Chem. Eng. Data, 48, pp. 362-366
  • Conrad, P.B., Miller, D.P., Cielensky, P.R., de Pablo, J.J., Stabilization and preservation of Lactobacillus acidophilus in sacharide matrices (2000) Cryobiology, 41, pp. 17-24
  • Corti, H.R., Frank, G.A., Marconi, M.C., Diffusion viscosity decoupling in supercooled aqueous trehalose solutions (2008) J. Phys. Chem. B, 112, pp. 12899-12906
  • Crowe, L.M., Reid, D.S., Crowe, J.H., Is trehalose special for preserving dry animals? (1996) Biophys. J., 71, pp. 2087-2093
  • Dhondge, S.S., Pandhurnekar, C.P., Grade, S., Dadure, K., Volumentric and transport behavior of different carbohydrates in aqueous and aqueous urea mixtures at different temperatures (2011) J. Chem. Eng. Data, 56, pp. 3484-3491
  • Elias, M.E., Elias, A.M., Trehalose+water fragile system: properties and glass transition (1999) J. Mol. Liq., 83, pp. 303-310
  • Elliot, S.R., Un unified model for the low energy vibrational behavior of amorphous solids (1992) Europhys. Lett., 19, pp. 201-206
  • Finegold, L., Franks, F., Hartley, R.H.M., Glass/rubber transitions and heat capacities of binary sugar blends (1989) J. Chem. Soc., Faraday Trans., 85, pp. 2945-2951
  • Forst, P., Werner, F., Delgado, A., On the preassure dependence of the viscosity of aqueous sugar solutions (2002) Rheol. Acta, 41, pp. 369-374
  • Fulcher, G.S., Analysis of recent measurements of the viscosity of glasses (1925) J. Am. Ceram. Soc., 8, pp. 339-355
  • Génotelle, J., Expression de la viscosite des solutions sucrees (1978) Ind. Alim. Agric., 95, pp. 747-755
  • Gordon, M., Taylor, J.S., Ideal copolymers and the second-order transitions of synthetic rubbers. i. Non-crystalline polymers (1952) J. Appl. Chem., 2, pp. 493-500
  • Green, J.L., Angell, C.A., Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly (1989) J. Phys. Chem., 93, pp. 2880-2882
  • Hallbrucker, A., Mayer, E., Johari, G.P., Glass-liquid transition and the enthalpy of devitrification of annealed vapor-deposited amorphous solid water: a comparison with hyperquenched glassy water (1989) J. Phys. Chem., 93, pp. 4986-4990
  • Levine, H., Slade, L., Principles of "cryostabilization" technology from structure/property relationships of carbohydrate/water systems (1988) Cryo-Letters, 9, pp. 21-63
  • Longinotti, M.P., Corti, H.R., Electrical conductivity and complexation of sodium borate in trehalose and sucrose aqueous solutions (2004) J. Solution Chem., 33, pp. 1029-1040
  • Longinotti, M.P., Corti, H.R., Diffusion of ferrocene methanol in supercooled aqueous solutions using cylindrical microelectrodes (2007) Electrochem. Commun., 9, pp. 1444-1450
  • Longinotti, M.P., Corti, H.R., Viscosity of concentrated sucrose and trehalose aqueous solutions including the supercooled regime (2008) J. Phys. Chem. Ref. Data, 37, pp. 1503-1516
  • Magazú, S., Branca, C., Faraone, A., Migliardo, F., Migliardo, P., Romeo, G., Comparison of disaccharide solutions across glass transition (2001) Physica B, 301, pp. 126-129
  • Magazú, S., Migliardo, F., Mondelli, C., Vadalà, M., Correlation between bioprotective effectiveness and dynamic properties of trehalose-water, maltose-water and sucrose-water mixtures (2005) Carbohydr. Res., 340, pp. 2796-2801
  • Maltini, E., Anese, M., Evaluation of viscosities of amorphous phases in partially frozen systems by WLF kinetics and glass transition temperatures (1995) Food Res. Int., 28, pp. 367-372
  • Migliori, M., Gabriele, D., Di Sanzo, R., di Cindio, B., Correa, S., Viscosity of multicomponent solutions of simple and complex sugars in water (2007) J. Chem. Eng. Data, 52, pp. 1347-1353
  • Miller, D.P., de Pablo, J.J., Calorimetric solution properties of simple saccharides and their significance for the stabilization of biological structure and function (2000) J. Phys. Chem. B, 104, pp. 8876-8883
  • Miller, D.P., de Pablo, J.J., Corti, H.R., Viscosity and glass transition temperature of aqueous mixtures of trahalose with borax and sodium chloride (1999) J. Phys. Chem. B, 103, pp. 10243-10249
  • Moran, G.R., Jeffrey, K.R., Thomas, J.M., Stevens, J., A dielectric analysis of liquid and glassy solid glucose/water solutions (2000) Carbohydr. Res., 328, pp. 573-584
  • Nemanich, R.J., Low frequency inelastic light scattering from chalcogenide glasses and alloys (1977) Phys. Rev. B, 16, pp. 1655-1674
  • Ngai, K.L., Sokolov, A., Steffen, W., Correlations between boson peak strengh and charcateristics of local segmental relaxation in polymers (1997) J. Chem. Phys., 107, pp. 5268-5272
  • Noel, T.R., Parker, R., Ring, S.G., Effect of molecular structures and water content on the dielectric relaxation behavior of amorphous low molecular weight carbohydrates above and below their glass transition (2000) Carbohydr. Res., 329, pp. 839-845
  • Orford, P.D., Parker, R., Ring, S.G., Aspects of the glass transition behavior of mixtures of carbohydrates of low molecular weight (1990) Carbohydr. Res., 196, pp. 11-18
  • Paluch, M., Roland, C.M., Pawlus, S., Temperature and pressure dependence of the a-relaxation in polymethylphenylsiloxane (2002) J. Chem. Phys., 116, pp. 10932-10937
  • Parks, G.S., Gilkey, W.A., Studies on glass. IV. Some viscosity data on liquid glucose and glucose-glycerol solutions (1929) J. Phys. Chem., 33, pp. 1428-1437
  • Roos, Y., Melting and glass transitions of low molecular weight carbohydrates (1993) Carbohydr. Res., 238, pp. 39-48
  • Senkov, O.N., Miracle, D.B., Description of the fragile behavior of glass-forming liquids with the use of experimentally accessible parameters (2009) J. Non-Cryst. Solids, 355, pp. 2596-2603
  • Seo, J., Oh, J., Kwon, H., Kim, H.K., Hwang, Y., The liquid glass transition in sugars and sugar mixtures (2006) AIP Conf. Proc., 832, pp. 37-45
  • Shamblin, S.L., Tang, X., Chang, L., Hancock, B.C., Pikal, H.J., Characterization of the time scales of molecular motion in pharmaceutically important glasses (1999) J. Phys. Chem. B, 103, pp. 4113-4121
  • Slade, L., Levine, H., Non equilibrium behavior of small carbohydrate water systems (1988) Pure Appl. Chem., 60, pp. 1841-1864
  • Slade, L., Levine, H., Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety (1991) Crit. Rev. Food Sci. Nutr., 30, pp. 115-360
  • Sokolov, A.P., Calemczuk, R., Salce, B., Kisliuk, A., Quitmann, D., Duval, E., Low temperature anomalies in strong and fragile glass formers (1997) Phys. Rev. Lett., 78, pp. 2405-2408
  • Sokolov, A.P., Novikov, V.N., Strube, B., Quasielastic light and neutron-scattering spectra in polybutadiene: relation to the boson peak vibrations (1997) Phys. Rev. B, 56, pp. 5042-5045
  • Sokolov, A.P., Rössler, E., Kisliuk, A., Quitmann, D., Dynamics of strong and fragile glass formers: differences and correlation with low-temperature properties (1993) Phys. Rev. Lett., 71, pp. 2062-2065
  • Tamman, G., Hesse, W., Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten (1926) Z. Anorg. Allg. Chem., 156, pp. 245-257
  • Telis, V.R.N., Telis-Romero, J., Mazzotti, H.B., Gabas, A.L., Viscosities of aqueous carbohydrate solutions at different temperatures and concentrations (2007) Int. J. Food Prop., 10, pp. 185-195
  • Trejo González, J.A., Longinotti, M.P., Corti, H.R., The viscosity of glycerol-water mixtures including the supercooled region (2011) J. Chem. Eng. Data, 56, pp. 1397-1406
  • Trejo González, J.A., Longinotti, M.P., Corti, H.R., Viscosity of supercooled aqueous glycerol solutions, validity of the Stokes-Einstein relatioship, and implications for cryopreservation (2012) Cryobiology, 65, pp. 159-162
  • van der Berg, R., Peters, J.A., van Bekkum, H., The sturcture and (local) stability constants of borate esters of mono- and di-saccharides as studied by 11B and 13C NMR spectroscopy (1994) Carbohydr. Res., 253, pp. 1-12
  • Vineeta, R.R.G., Singh, M., Apparent molar volumes and viscosities of mono- and disaccharides in water and in (DMF+water) mixed solvents systems at 293.15, 303.15 and 313.15K (2010) J. Indian Chem. Soc., 87, pp. 1087-1099
  • Vogel, H., (1921) J. Phys. Z, 22, p. 645
  • Weast, R.C., (1976) Handbook of Chemistry and Physics, , The Chemical Rubber Company, Cleveland, USA
  • Williams, M.L., Landel, R.F., Ferry, J.D., The temperature dependence of relaxation mechanisms in amorphous polymers and other glass forming liquids (1955) J. Am. Chem. Soc., 77, pp. 3701-3707
  • Yamamuro, O., Oishi, Y., Nishizawa, M., Matsuo, M., Enthalpy relaxation of glassy glycerol prepared by rapid liquid quenching (1998) J. Non-Cryst. Solids, pp. 517-521

Citas:

---------- APA ----------
Longinotti, M.P., Trejo González, J.A. & Corti, H.R. (2014) . Concentration and temperature dependence of the viscosity of polyol aqueous solutions. Cryobiology, 69(1), 84-90.
http://dx.doi.org/10.1016/j.cryobiol.2014.05.008
---------- CHICAGO ----------
Longinotti, M.P., Trejo González, J.A., Corti, H.R. "Concentration and temperature dependence of the viscosity of polyol aqueous solutions" . Cryobiology 69, no. 1 (2014) : 84-90.
http://dx.doi.org/10.1016/j.cryobiol.2014.05.008
---------- MLA ----------
Longinotti, M.P., Trejo González, J.A., Corti, H.R. "Concentration and temperature dependence of the viscosity of polyol aqueous solutions" . Cryobiology, vol. 69, no. 1, 2014, pp. 84-90.
http://dx.doi.org/10.1016/j.cryobiol.2014.05.008
---------- VANCOUVER ----------
Longinotti, M.P., Trejo González, J.A., Corti, H.R. Concentration and temperature dependence of the viscosity of polyol aqueous solutions. Cryobiology. 2014;69(1):84-90.
http://dx.doi.org/10.1016/j.cryobiol.2014.05.008