Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Trehalose and sucrose, two sugars that are involved in the protection of living organisms under extreme conditions, and their mixtures with salts were employed to prepare supercooled or freeze-dried glassy systems. The objective of the present work was to explore the effects of different salts on water sorption, glass transition temperature (Tg), and formation and melting of ice in aqueous sugar systems. In the sugar-salt mixtures, water adsorption was higher than expected on the basis of the water uptake by each pure component. In systems with a reduced mass fraction of water (w ≤ 0.4), salts delayed water crystallization, probably due to ion-water interactions. In systems where w > 0.6, water crystallization could be explained by the known colligative properties of the solutes. The glass transition temperature of the maximally concentrated matrix (Tg′) was decreased by the presence of salts. However, the actual Tg values of the systems were not modified. Thus, the effect of salts on sorption behavior and formation of ice may reflect dynamic water-salt-sugar interactions which take place at a molecular level and are related to the charge/mass ratio of the cation present without affecting supramolecular or macroscopic properties. © 2001 Elsevier Science (USA).

Registro:

Documento: Artículo
Título:Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting
Autor:Mazzobre, M.F.; Longinotti, M.P.; Corti, H.R.; Buera, M.P.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
Unidad de Actividad Química, Comisión Nacional de Energía Atómica, Avda. General Paz 1499, Argentina
Escuela de Ciencia y Tecnología, Universidad Nacionalde General San Martín, San Martin, Argentina
Palabras clave:biomaterial; glass; ice; sodium chloride; sucrose; trehalose; water; adsorption; aqueous solution; article; chemical interaction; crystallization; freeze drying; mass; melting point; phase transition; priority journal; temperature; water transport; Adsorption; Biocompatible Materials; Carbohydrates; Cryopreservation; Cryoprotective Agents; Crystallization; Drug Stability; Freeze Drying; Ice; Salts; Sucrose; Thermodynamics; Trehalose; Water
Año:2002
Volumen:43
Número:3
Página de inicio:199
Página de fin:210
DOI: http://dx.doi.org/10.1006/cryo.2001.2345
Título revista:Cryobiology
Título revista abreviado:Cryobiology
ISSN:00112240
CODEN:CRYBA
CAS:Biocompatible Materials; Carbohydrates; Cryoprotective Agents; Salts; Sucrose, 57-50-1; Trehalose, 99-20-7; Water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00112240_v43_n3_p199_Mazzobre

Referencias:

  • Ablett, S., Izzard, M.J., Lillford, P.J., Differential scanning calorimetry study of frozen sucrose and glycerol solutions (1992) J. Chem. Soc. Far. Trans., 88, pp. 789-794
  • Angell, C.A., Bressel, R.D., Green, J.L., Kanno, H., Oguni, M., Sare, E.J., Liquid fragility and the glass transition in water and aqueous solutions (1994) J. Food Eng., 22, pp. 115-142
  • Arakawa, T., Timasheff, S.N., Preferential interactions of proteins with salts in concentrated solutions (1982) Biochemistry, 21, pp. 6536-6544
  • Carpenter, J.F., Crowe, J.H., Arakawa, T., Comparison of solute-induced protein stabilization in aqueous solution and in the frozen and dried states (1986) J. Dairy Sci., 73, pp. 3627-3636
  • Cerrutti, P., Segovia de Huergo, M., Galvagno, M., Schebor, C., Buera, M.P., Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices (2000) Appl. Microbiol. Biotechnol., 54, pp. 575-580
  • Chang, B.S., Randall, C.S., Use of subambient thermal analysis to optimize protein lyophilization (1992) Cryobiology, 29, pp. 632-656
  • Chen, T., Fowler, A., Toner, M., Literature review: Supplemented phase diagram of the trehalose-water binary mixture (2000) Cryobiology, 40, pp. 277-282
  • Cohen, M.D., Flagan, R.C., Seinfeld, J.H.G., Studies of concentrated electrolyte solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions (1987) J. Phys. Chem., 91, pp. 4563-4574
  • Cook, W.J., Bugg, C.E., Calcium interactions with D-glucans: Crystal structure of α-α trehalose-calcium bromide monohydrate (1973) Carbohyd. Res., 31, pp. 265-275
  • Crowe, J.H., Carpenter, J.F., Crowe, L.M., The role of vitrification in anhydrobiosis (1998) Annu. Rev. Physiol., 60, pp. 73-103
  • Flink, J.M., Structure and structure transitions in dried carbohydrate materials (1983) Physical Properties of Foods, pp. 473-521. , M. Peleg and L. B. Bageley, Eds. AVI Press, Westport, CT
  • Goetze, W., Recent tests of the mode coupling theory for glassy dynamics (1999) J. Phys. Condens. Matter, 11, pp. A1-A45
  • Goldberg, R.N., Nuttall, R.L., Evaluated activity and osmotic coefficients for aqueous solutions: The alkaline earth metal halides (1978) J. Phys. Chem. Ref. Data, 7, pp. 263-310
  • Hemminga, M.A., Roozen, M.J.G.W., Walstra, P., Molecular motions and the glassy state (1993) The Glassy State in Foods, pp. 157-171. , J.M.V. Blanshard and P.J. Lillford, Eds. Nottingham Univ. Press, Loughborough, UK
  • Her, L.M., Deras, M., Nail, S.M., Electrolyte-induced changes in glass transition temperatures of freeze-concentrated solutes (1995) Pharmacol. Res., 12, pp. 768-772
  • Iglesias, H.A., Chirife, J., Buera, M.P., Water sorption isotherm of amorphous trehalose (1997) J. Sci. Food Agric., 75, pp. 183-186
  • Karel, M., Physico-chemical modification of the state of water in foods. A speculative survey (1981) Water Relations of Foods, pp. 639-658. , R. B. Duckworth, Ed. Academic Press, London
  • Lammert, A.M., Schmidt, S.J., Day, G.A., Water activity and solubility of trehalose (1998) Food Chem., 61, pp. 139-144
  • Levine, H., Slade, L., Thermomechanical properties of small carbohydrate-water glasses and "rubbers" (1988) J. Chem. Soc. Faraday Trans., 84, pp. 2619-2633
  • Mazzobre, M.F., Buera, M.P., Combined effects of trehalose and cations on the thermal resistance of β-galactosidase in freeze-dried systems (1999) Biochim. Biophys. Acta, 1473, pp. 337-344
  • Miller, D.P., De Pablo, J.J., Corti, H.R., Thermophysical properties of trehalose and its concentrated aqueous solutions (1997) Pharmacol. Res., 14, pp. 578-590
  • Miller, D.P., Anderson, R.E., De Pablo, J.J., Stabilization of lactate dehydrogenase following freeze-thawing and vacuum-drying in the presence of trehalose and borate (1998) Pharmacol. Res., 15, pp. 1215-1221
  • Morel-Desrosier, N., Lhermet, C., Morel, J.P., Interactions between cations and sugars. Part 6. Calorimetric method for simultaneous determination of the stability constant and enthalpy change for weak complexation (1991) J. Chem. Soc. Faraday Trans., 87, pp. 2173-2177
  • Obendorf, R.L., Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance (1997) Seed Sci. Res., 7, pp. 63-74
  • Pitzer, K.S., Thermodynamics of electrolytes. I. Theoretical basis general equations (1973) J. Phys. Chem., 77, pp. 268-281
  • Rasmussen, D., Luyet, B., Complementary study of some non-equilibrium phase transitions in frozen solutions of glycerol, ethylene glycol, glucose and sucrose (1969) Biodynamics, 10, pp. 319-331
  • Robinson, R.A., Stokes, R.H., Basic concepts and definitions (1955) Electrolyte Solutions, pp. 23-47. , chap 2. Butterworths, London
  • Roos, Y., Melting and glass transition of low molecular weight carbohydrates (1993) Carbohyd. Res., 238, pp. 39-48
  • Roos, Y., Karel, M., Applying state diagrams to food processing and development (1991) Food Technol., 45, pp. 66-71
  • Roos, Y., Karel, M., Nonequilibrium ice formation in carbohydrate solutions (1991) Cryo-Letters, 12, pp. 367-376
  • Roos, Y., Karel, M., Amorphous state and delayed ice formation in sucrose solutions (1991) Int. J. Food Sci. Technol., 26, pp. 553-566
  • Slade, L., Levine, H., Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety (1991) Crit. Rev. Food Sci. Nut., 30, pp. 115-360
  • Simatos, D., Blond, G., DSC studies and the stability of frozen foods (1991) Water Relationships in Foods, pp. 139-155. , H. Levine and L. Slade, Eds. Plenum, New York
  • Simatos, D., Blond, G., Some aspects of the glass transition in frozen food systems (1993) The Glassy State of Foods, pp. 395-416. , J. M. V. Blanshard and P. J. Lillford, Eds. Nottingham Univ. Press, Loughborough, UK
  • Stokes, R.H., Robinson, R.A., Ionic hydration and activity in electrolytes solutions (1948) J. Am. Chem. Soc., 70, pp. 1870-1879
  • Storey, B.T., Noiles, E.E., Thompson, K.A., Comparison of glycerol, other polyols, trehalose and raffinose to provide a defined cryoprotectant medium for mouse sperm cryopreservation (1998) Cryobiology, 37, pp. 46-58
  • Sun, W., Leopold, A., Cytoplasmic vitrification and survival of anhydrobiotic organisms (1997) Comp. Biochem. Physiol., 117 A, pp. 327-333
  • Suzuki, T., Imamura, K., Yamamoto, K., Satoh, T., Okazaki, M., Thermal stabilization of freeze-dried enzymes by sugars (1997) J. Chem. Eng. Japan, 30, pp. 609-613
  • Turner, S., Senaratna, T., Touchell, D., Bunn, E., Dixon, K., Tan, B., Stereochemical arrangement of hydroxyl groups in sugar and polyalcohol molecules as an important factor in effective cryopreservation (2001) Plant Sci., 160, pp. 489-497

Citas:

---------- APA ----------
Mazzobre, M.F., Longinotti, M.P., Corti, H.R. & Buera, M.P. (2002) . Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting. Cryobiology, 43(3), 199-210.
http://dx.doi.org/10.1006/cryo.2001.2345
---------- CHICAGO ----------
Mazzobre, M.F., Longinotti, M.P., Corti, H.R., Buera, M.P. "Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting" . Cryobiology 43, no. 3 (2002) : 199-210.
http://dx.doi.org/10.1006/cryo.2001.2345
---------- MLA ----------
Mazzobre, M.F., Longinotti, M.P., Corti, H.R., Buera, M.P. "Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting" . Cryobiology, vol. 43, no. 3, 2002, pp. 199-210.
http://dx.doi.org/10.1006/cryo.2001.2345
---------- VANCOUVER ----------
Mazzobre, M.F., Longinotti, M.P., Corti, H.R., Buera, M.P. Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting. Cryobiology. 2002;43(3):199-210.
http://dx.doi.org/10.1006/cryo.2001.2345