Abstract:
A new approach for approximating the continuum wave functions for hydrogenic atoms with Gaussians basis sets is developed and tested. In this the plane wave is left unchanged and the distorting factor, represented by the Confluent Hypergeometric function, is expanded as a sum of Spherical Harmonics multiplied by a series of Gaussians. In this way the number of spherical waves and Gaussians will be significantly reduced and the plane wave will be responsible for the momentum conservation. As compared with previous methods that expand the full continuum, including the plane wave, our strategy does not require a great quantity of partial waves for convergence. Dense oscillations which are characteristic of the plane wave, are avoided. To test the performance of this approximation to describe a free-bound atomic form factor, the ionization cross section of hydrogen by impact of protons in first Born approximation is calculated. Compared with the exact results, a good agreement with just 4 spherical waves and ten Gaussians each is obtained. The method looks very interesting, especially to speed up atomic and molecular collision calculations involving the continuum. © 2012 Elsevier B.V. All rights reserved.
Registro:
| Documento: |
Artículo
|
| Título: | New approach for approximating the continuum wave function by Gaussian basis set |
| Autor: | Fiori, M.; Miraglia, J.E. |
| Filiación: | Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de Salta, Salta, Argentina Inst. de Astronoma y Fisica Del Espacio, Consejo Nacional de Investigaciones Cientficas y Tcnicas, Departamento de Física, Universidad de Buenos Aires, Casilla de Correo 67, Sucursal 28, C1428EGA Buenos Aires, Argentina
|
| Palabras clave: | Coulomb functions; Ionization; Minimization and fitting; Wave functions and integrals; Atomic and molecular collision; Atomic form factors; Basis sets; Confluent hypergeometric functions; Coulomb functions; Exact results; First Born approximation; Gaussian basis sets; Gaussians; Hydrogenic atoms; Ionization cross section; Momentum conservations; Partial waves; Plane wave; Spherical harmonics; Spherical waves; Approximation theory; Atoms; Born approximation; Harmonic analysis; High energy physics; Hydrogen; Ionization; Wave functions; Elastic waves |
| Año: | 2012
|
| Volumen: | 183
|
| Número: | 12
|
| Página de inicio: | 2528
|
| Página de fin: | 2534
|
| DOI: |
http://dx.doi.org/10.1016/j.cpc.2012.07.001 |
| Título revista: | Computer Physics Communications
|
| Título revista abreviado: | Comput Phys Commun
|
| ISSN: | 00104655
|
| CODEN: | CPHCB
|
| Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00104655_v183_n12_p2528_Fiori |
Referencias:
- Boys, S.F., (1950) Proc. R. Soc. Lond. Ser. A, 200, p. 542
- Hehre, W., Radom, L., Scheleyer, P.V., Pople, J., (1986) AB Initio Molecular Orbital Theory, , Wiley-Interscience
- Jensen, F., (2006) Introduction to Computational Chemistry, , second ed. Wiley
- Szabo, A., Ostlund, N., (1996) Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, , Dover New York
- Toshima, N., (1992) J. Phys. B: At. Mol. Opt. Phys., 25, p. 635
- Toshima, N., (1999) Phys. Rev. A, 59, p. 1981
- Errea, L.F., Mendez, L., Riera, A., (1979) J. Phys. B: At. Mol. Opt. Phys., 12, p. 69
- Schneider, B.I., (1975) Phys. Rev. A, 11, p. 1957
- Morgan, L.A., Tennyson, J., Gillan, C.J., (1998) Comput. Phys. Comm., 114, p. 120
- Nestmann, B.M., Peyerimhoff, S.D., (1990) J. Phys. B: At. Mol. Opt. Phys., 23, p. 773
- Nestmann, B.M., Nesbet, R.K., Peyerimhoff, S.D., (1991) J. Phys. B: At. Mol. Opt. Phys., 24, p. 5133
- Faure, A., Gorfinkiel, J.D., Morgan, L.A., Tennyson, J., (2002) Comput. Phys. Comm., 144, p. 224
- Tennyson, J., (2010) Phys. Rep., 491, p. 29
- Tarana, M., Horacek, J., (2007) J. Chem. Phys., 127, p. 154319
- Kaufmann, K., Baumeister, W., Jungen, M., (1989) J. Phys. B: At. Mol. Opt. Phys., 22, p. 2223
- Nordsieck, A., (1954) Phys. Rev., 93, p. 785
- Gravielle, M.S., Miraglia, J.E., (1992) Comput. Phys. Comm., 69, p. 53
- Mc Dowell, M.R.C., Coleman, J.P., (1970) Introduction to the Theory of IonAtom Collisions, , North Holland Amsterdam, London
- Crothers, D.S., McCartney, M., (1992) Comput. Phys. Comm., 72, p. 288
- Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G., (1953) Higher Transcendental Functions, Bateman Manuscript Project, , McGraw-Hill
- Perger, W.F., Bhalla, A., Nardin, M., (1993) Comput. Phys. Comm., 77, p. 249
- Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., (1992) Numerical Recipes in Fortran: The Art of Scientific Computing, , second ed. Cambridge University Press
- Gottfried, K., Yan, T.-M., (2003) Quantum Mechanics: Fundamentals, , second ed. Springer
- Talman, J.D., (1989) Comput. Phys. Comm., 54, p. 84
Citas:
---------- APA ----------
Fiori, M. & Miraglia, J.E.
(2012)
. New approach for approximating the continuum wave function by Gaussian basis set. Computer Physics Communications, 183(12), 2528-2534.
http://dx.doi.org/10.1016/j.cpc.2012.07.001---------- CHICAGO ----------
Fiori, M., Miraglia, J.E.
"New approach for approximating the continuum wave function by Gaussian basis set"
. Computer Physics Communications 183, no. 12
(2012) : 2528-2534.
http://dx.doi.org/10.1016/j.cpc.2012.07.001---------- MLA ----------
Fiori, M., Miraglia, J.E.
"New approach for approximating the continuum wave function by Gaussian basis set"
. Computer Physics Communications, vol. 183, no. 12, 2012, pp. 2528-2534.
http://dx.doi.org/10.1016/j.cpc.2012.07.001---------- VANCOUVER ----------
Fiori, M., Miraglia, J.E. New approach for approximating the continuum wave function by Gaussian basis set. Comput Phys Commun. 2012;183(12):2528-2534.
http://dx.doi.org/10.1016/j.cpc.2012.07.001