Artículo

Castro, C.N.; Barcala Tabarrozzi, A.E.; Winnewisser, J.; Gimeno, M.L.; Antunica Noguerol, M.; Liberman, A.C.; Paz, D.A.; Dewey, R.A.; Perone, M.J. "Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes" (2014) Clinical and Experimental Immunology. 177(1):149-160
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Type 1 diabetes (T1DM) is a T cell-mediated autoimmune disease that selectively destroys pancreatic β cells. The only possible cure for T1DM is to control autoimmunity against β cell-specific antigens. We explored whether the natural compound curcumin, with anti-oxidant and anti-inflammatory activities, might down-regulate the T cell response that destroys pancreatic β cells to improve disease outcome in autoimmune diabetes. We employed two accelerated autoimmune diabetes models: (i) cyclophosphamide (CYP) administration to non-obese diabetic (NOD) mice and (ii) adoptive transfer of diabetogenic splenocytes into NODscid mice. Curcumin treatment led to significant delay of disease onset, and in some instances prevented autoimmune diabetes by inhibiting pancreatic leucocyte infiltration and preserving insulin-expressing cells. To investigate the mechanisms of protection we studied the effect of curcumin on key immune cell populations involved in the pathogenesis of the disease. Curcumin modulates the T lymphocyte response impairing proliferation and interferon (IFN)-γ production through modulation of T-box expressed in T cells (T-bet), a key transcription factor for proinflammatory T helper type 1 (Th1) lymphocyte differentiation, both at the transcriptional and translational levels. Also, curcumin reduces nuclear factor (NF)-κB activation in T cell receptor (TCR)-stimulated NOD lymphocytes. In addition, curcumin impairs the T cell stimulatory function of dendritic cells with reduced secretion of proinflammatory cytokines and nitric oxide (NO) and low surface expression of co-stimulatory molecules, leading to an overall diminished antigen-presenting cell activity. These in-vitro effects correlated with ex-vivo analysis of cells obtained from curcumin-treated mice during the course of autoimmune diabetes. These findings reveal an effective therapeutic effect of curcumin in autoimmune diabetes by its actions on key immune cells responsible for β cell death. © 2014 British Society for Immunology.

Registro:

Documento: Artículo
Título:Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes
Autor:Castro, C.N.; Barcala Tabarrozzi, A.E.; Winnewisser, J.; Gimeno, M.L.; Antunica Noguerol, M.; Liberman, A.C.; Paz, D.A.; Dewey, R.A.; Perone, M.J.
Filiación:Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
Laboratorio de Biologia del Desarrollo, Departamento de Biodiversidad y Biologia Experimental, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiologia Biologia Molecular y Neurociencias, Universidad de Buenos Aires, Buenos Aires, Argentina
Laboratorio de Terapia Génica y Células Madre, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús (IIB-INTECH) - CONICET -UNSAM, Chascomús, Argentina
Polo Científico Tecnológico, Godoy Cruz 2390, Buenos Aires C1425FQD, Argentina
Palabras clave:Dendritic cells; Inflammation; NOD mouse; T lymphocytes; T-bet; curcumin; cyclophosphamide; cytokine; gamma interferon; immunoglobulin enhancer binding protein; insulin; nitric oxide; T lymphocyte receptor; transcription factor T bet; adoptive transfer; animal cell; animal experiment; animal model; animal tissue; antigen presenting cell; antigen specificity; article; autoimmunity; cell activity; cell death; cell infiltration; cell protection; cellular immunity; controlled study; cytokine production; cytokine release; dendritic cell; diabetogenesis; disease course; down regulation; ex vivo study; experimental diabetes mellitus; female; immunocompetent cell; immunomodulation; in vitro study; insulin dependent diabetes mellitus; insulitis; leukocyte; long term care; lymphocyte proliferation; mouse; NOD SCID mouse; nonhuman; nonobese diabetic mouse; outcome assessment; pancreas islet beta cell; pathogenesis; population; priority journal; protein expression; spleen cell; T lymphocyte; T lymphocyte activation; Th1 cell; transcription regulation; translation regulation; dendritic cells; inflammation; NOD mouse; T lymphocytes; T-bet; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antigen Presentation; Antioxidants; Cells, Cultured; Curcumin; Dendritic Cells; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Disease Models, Animal; Humans; Interferon-gamma; Lymphocyte Activation; Mice; Mice, Inbred BALB C; Mice, Inbred NOD; Mice, SCID; Mice, Transgenic; NF-kappa B; T-Box Domain Proteins; Th1 Cells; Transcriptional Activation
Año:2014
Volumen:177
Número:1
Página de inicio:149
Página de fin:160
DOI: http://dx.doi.org/10.1111/cei.12322
Título revista:Clinical and Experimental Immunology
Título revista abreviado:Clin. Exp. Immunol.
ISSN:00099104
CODEN:CEXIA
CAS:curcumin, 458-37-7; cyclophosphamide, 50-18-0; gamma interferon, 82115-62-6; insulin, 9004-10-8; nitric oxide, 10102-43-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00099104_v177_n1_p149_Castro

Referencias:

  • Atkinson, M.A., Maclaren, N.K., The pathogenesis of insulin-dependent diabetes mellitus (1994) N Engl J Med, 331, pp. 1428-1436
  • Roep, B.O., Kallan, A.A., De Vries, R.R., Beta-cell antigen-specific lysis of macrophages by CD4 T-cell clones from newly diagnosed IDDM patient. A putative mechanism of T-cell-mediated autoimmune islet cell destruction (1992) Diabetes, 41, pp. 1380-1384
  • Davidson, M.H., Cardiovascular risk factors in a patient with diabetes mellitus and coronary artery disease: therapeutic approaches to improve outcomes: perspectives of a preventive cardiologist (2012) Am J Cardiol, 110, pp. 43B-449
  • Reimann, M., Bonifacio, E., Solimena, M., An update on preventive and regenerative therapies in diabetes mellitus (2009) Pharmacol Ther, 121, pp. 317-331
  • Sosenko, J.M., Skyler, J.S., Palmer, J.P., The prediction of type 1 diabetes by multiple autoantibody levels and their incorporation into an autoantibody risk score in relatives of type 1 diabetic patients (2013) Diabetes Care, 36, pp. 2615-2620
  • Aggarwal, B.B., Harikumar, K.B., Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases (2009) Int J Biochem Cell Biol, 41, pp. 40-59
  • Natarajan, C., Bright, J.J., Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes (2002) J Immunol, 168, pp. 6506-6513
  • Motawi, T.K., Rizk, S.M., Shehata, A.H., Effects of curcumin and Ginkgo biloba on matrix metalloproteinases gene expression and other biomarkers of inflammatory bowel disease (2012) J Physiol Biochem, 68, pp. 529-539
  • Chandran, B., Goel, A., A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis (2012) Phytother Res, 26, pp. 1719-1725
  • Sun, J., Zhao, Y., Hu, J., Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice (2013) PLOS ONE, 8, pp. e67078
  • Hatcher, H., Planalp, R., Cho, J., Torti, F.M., Torti, S.V., Curcumin: from ancient medicine to current clinical trials (2008) Cell Mol Life Sci, 65, pp. 1631-1652
  • Curic, S., Wu, Y., Shan, B., Curcumin acts anti-proliferative and pro-apoptotic in human meningiomas (2013) J Neurooncol, 113, pp. 385-396
  • Shishodia, S., Sethi, G., Aggarwal, B.B., Curcumin: getting back to the roots (2005) Ann NY Acad Sci, 1056, pp. 206-217
  • Soetikno, V., Sari, F.R., Veeraveedu, P.T., Curcumin ameliorates macrophage infiltration by inhibiting NF-kappaB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy (2011) Nutr Metab (Lond), 8, p. 35
  • Weisberg, S.P., Leibel, R., Tortoriello, D.V., Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity (2008) Endocrinology, 149, pp. 3549-3558
  • Chuengsamarn, S., Rattanamongkolgul, S., Luechapudiporn, R., Phisalaphong, C., Jirawatnotai, S., Curcumin extract for prevention of type 2 diabetes (2012) Diabetes Care, 35, pp. 2121-2127
  • Kanai, M., Yoshimura, K., Asada, M., A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer (2011) Cancer Chemother Pharmacol, 68, pp. 157-164
  • Kanai, M., Otsuka, Y., Otsuka, K., A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin) in cancer patients (2013) Cancer Chemother Pharmacol, 71, pp. 1521-1530
  • Kanitkar, M., Gokhale, K., Galande, S., Bhonde, R.R., Novel role of curcumin in the prevention of cytokine-induced islet death in vitro and diabetogenesis in vivo (2008) Br J Pharmacol, 155, pp. 702-713
  • Chanpoo, M., Petchpiboonthai, H., Panyarachun, B., Anupunpisit, V., Effect of curcumin in the amelioration of pancreatic islets in streptozotocin-induced diabetic mice (2010) J Med Assoc Thai, 93 (SUPPL. 6), pp. S152-S159
  • Driver, J.P., Serreze, D.V., Chen, Y.G., Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease (2011) Semin Immunopathol, 33, pp. 67-87
  • Perone, M.J., Bertera, S., Tawadrous, Z.S., Dendritic cells expressing transgenic galectin-1 delay onset of autoimmune diabetes in mice (2006) J Immunol, 177, pp. 5278-5289
  • Liberman, A.C., Antunica-Noguerol, M., Ferraz-de-Paula, V., Compound A, a dissociated glucocorticoid receptor modulator, inhibits T-bet (Th1) and induces GATA-3 (Th2) activity in immune cells (2012) PLOS ONE, 7, pp. e35155
  • Liberman, A.C., Refojo, D., Druker, J., The activated glucocorticoid receptor inhibits the transcription factor T-bet by direct protein-protein interaction (2007) FASEB J, 21, pp. 1177-1188
  • Szabo, S.J., Kim, S.T., Costa, G.L., Zhang, X., Fathman, C.G., Glimcher, L.H., A novel transcription factor, T-bet, directs Th1 lineage commitment (2000) Cell, 100, pp. 655-669
  • Perone, M.J., Larregina, A.T., Shufesky, W.J., Transgenic galectin-1 induces maturation of dendritic cells that elicit contrasting responses in naive and activated T cells (2006) J Immunol, 176, pp. 7207-7220
  • Augstein, P., Elefanty, A.G., Allison, J., Harrison, L.C., Apoptosis and beta-cell destruction in pancreatic islets of NOD mice with spontaneous and cyclophosphamide-accelerated diabetes (1998) Diabetologia, 41, pp. 1381-1388
  • Piganelli, J.D., Flores, S.C., Cruz, C., A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone (2002) Diabetes, 51, pp. 347-355
  • Roep, B.O., De Vries, R.R., T-lymphocytes and the pathogenesis of type 1 (insulin-dependent) diabetes mellitus (1992) Eur J Clin Invest, 22, pp. 697-711
  • Steinman, R.M., Nussenzweig, M.C., Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance (2002) Proc Natl Acad Sci USA, 99, pp. 351-358
  • Barcala Tabarrozzi, A.E., Castro, C.N., Dewey, R.A., Sogayar, M.C., Labriola, L., Perone, M.J., Cell-based interventions to halt autoimmunity in type 1 diabetes mellitus (2013) Clin Exp Immunol, 171, pp. 135-146
  • Brouet, I., Ohshima, H., Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages (1995) Biochem Biophys Res Commun, 206, pp. 533-540
  • Like, A.A., Rossini, A.A., Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus (1976) Science, 193, pp. 415-417
  • Liu, L., Liu, Y.L., Liu, G.X., Curcumin ameliorates dextran sulfate sodium-induced experimental colitis by blocking STAT3 signaling pathway (2013) Int Immunopharmacol, 17, pp. 314-320
  • Ramirez-Tortosa, M.C., Mesa, M.D., Aguilera, M.C., Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis (1999) Atherosclerosis, 147, pp. 371-378
  • Lim, G.P., Chu, T., Yang, F., Beech, W., Frautschy, S.A., Cole, G.M., The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse (2001) J Neurosci, 21, pp. 8370-8377
  • Joe, B., Rao, U.J., Lokesh, B.R., Presence of an acidic glycoprotein in the serum of arthritic rats: modulation by capsaicin and curcumin (1997) Mol Cell Biochem, 169, pp. 125-134
  • Deodhar, S.D., Sethi, R., Srimal, R.C., Preliminary study on antirheumatic activity of curcumin (diferuloyl methane) (1980) Indian J Med Res, 71, pp. 632-634
  • Katz, J.D., Benoist, C., Mathis, D., T helper cell subsets in insulin-dependent diabetes (1995) Science, 268, pp. 1185-1188
  • Perone, M.J., Bertera, S., Shufesky, W.J., Suppression of autoimmune diabetes by soluble galectin-1 (2009) J Immunol, 182, pp. 2641-2653
  • Fahey, A.J., Adrian Robins, R., Constantinescu, C.S., Curcumin modulation of IFN-beta and IL-12 signalling and cytokine induction in human T cells (2007) J Cell Mol Med, 11, pp. 1129-1137
  • Williams, C.L., Schilling, M.M., Cho, S.H., STAT4 and T-bet are required for the plasticity of IFN-gamma expression across Th2 ontogeny and influence changes in ifng promoter DNA methylation (2013) J Immunol, 191, pp. 678-687
  • Martin-Orozco, N., Chung, Y., Chang, S.H., Wang, Y.H., Dong, C., Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells (2009) Eur J Immunol, 39, pp. 216-224
  • Bending, D., De la Pena, H., Veldhoen, M., Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice (2009) J Clin Invest, 119, pp. 565-572
  • Poligone, B., Weaver Jr, D.J., Sen, P., Baldwin Jr, A.S., Tisch, R., Elevated NF-kappaB activation in nonobese diabetic mouse dendritic cells results in enhanced APC function (2002) J Immunol, 168, pp. 188-196
  • Rescigno, M., Martino, M., Sutherland, C.L., Gold, M.R., Ricciardi-Castagnoli, P., Dendritic cell survival and maturation are regulated by different signaling pathways (1998) J Exp Med, 188, pp. 2175-2180
  • Kim, G.Y., Kim, K.H., Lee, S.H., Curcumin inhibits immunostimulatory function of dendritic cells: MAPKs and translocation of NF-kappa B as potential targets (2005) J Immunol, 174, pp. 8116-8124
  • Kang, B.Y., Chung, S.W., Chung, W., Im, S., Hwang, S.Y., Kim, T.S., Inhibition of interleukin-12 production in lipopolysaccharide-activated macrophages by curcumin (1999) Eur J Pharmacol, 384, pp. 191-195
  • Kang, B.Y., Song, Y.J., Kim, K.M., Choe, Y.K., Hwang, S.Y., Kim, T.S., Curcumin inhibits Th1 cytokine profile in CD4+ T cells by suppressing interleukin-12 production in macrophages (1999) Br J Pharmacol, 128, pp. 380-384
  • Alleva, D.G., Pavlovich, R.P., Grant, C., Kaser, S.B., Beller, D.I., Aberrant macrophage cytokine production is a conserved feature among autoimmune-prone mouse strains: elevated interleukin (IL)-12 and an imbalance in tumor necrosis factor-alpha and IL-10 define a unique cytokine profile in macrophages from young nonobese diabetic mice (2000) Diabetes, 49, pp. 1106-1115
  • Marleau, A.M., Singh, B., Myeloid dendritic cells in non-obese diabetic mice have elevated costimulatory and T helper-1-inducing abilities (2002) J Autoimmun, 19, pp. 23-35
  • Morin, J., Faideau, B., Gagnerault, M.C., Lepault, F., Boitard, C., Boudaly, S., Passive transfer of flt-3L-derived dendritic cells delays diabetes development in NOD mice and associates with early production of interleukin (IL)-4 and IL-10 in the spleen of recipient mice (2003) Clin Exp Immunol, 134, pp. 388-395
  • Shehzad, A., Lee, Y.S., Molecular mechanisms of curcumin action: signal transduction (2013) Biofactors, 39, pp. 27-36
  • Rogers, N.M., Kireta, S., Coates, P.T., Curcumin induces maturation-arrested dendritic cells that expand regulatory T cells in vitro and in vivo (2010) Clin Exp Immunol, 162, pp. 460-473
  • Gerondakis, S., Siebenlist, U., Roles of the NF-kappaB pathway in lymphocyte development and function (2010) Cold Spring Harbor Perspect Biol, 2, pp. a000182
  • Curtsinger, J.M., Schmidt, C.S., Mondino, A., Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells (1999) J Immunol, 162, pp. 3256-3262
  • Pape, K.A., Khoruts, A., Mondino, A., Jenkins, M.K., Inflammatory cytokines enhance the in vivo clonal expansion and differentiation of antigen-activated CD4+ T cells (1997) J Immunol, 159, pp. 591-598
  • Tse, H.M., Milton, M.J., Schreiner, S., Profozich, J.L., Trucco, M., Piganelli, J.D., Disruption of innate-mediated proinflammatory cytokine and reactive oxygen species third signal leads to antigen-specific hyporesponsiveness (2007) J Immunol, 178, pp. 908-917
  • Xavier, S., Sadanandan, J., George, N., Paulose, C.S., Beta(2)-adrenoceptor and insulin receptor expression in the skeletal muscle of streptozotocin induced diabetic rats: antagonism by vitamin D(3) and curcumin (2012) Eur J Pharmacol, 687, pp. 14-20

Citas:

---------- APA ----------
Castro, C.N., Barcala Tabarrozzi, A.E., Winnewisser, J., Gimeno, M.L., Antunica Noguerol, M., Liberman, A.C., Paz, D.A.,..., Perone, M.J. (2014) . Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes. Clinical and Experimental Immunology, 177(1), 149-160.
http://dx.doi.org/10.1111/cei.12322
---------- CHICAGO ----------
Castro, C.N., Barcala Tabarrozzi, A.E., Winnewisser, J., Gimeno, M.L., Antunica Noguerol, M., Liberman, A.C., et al. "Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes" . Clinical and Experimental Immunology 177, no. 1 (2014) : 149-160.
http://dx.doi.org/10.1111/cei.12322
---------- MLA ----------
Castro, C.N., Barcala Tabarrozzi, A.E., Winnewisser, J., Gimeno, M.L., Antunica Noguerol, M., Liberman, A.C., et al. "Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes" . Clinical and Experimental Immunology, vol. 177, no. 1, 2014, pp. 149-160.
http://dx.doi.org/10.1111/cei.12322
---------- VANCOUVER ----------
Castro, C.N., Barcala Tabarrozzi, A.E., Winnewisser, J., Gimeno, M.L., Antunica Noguerol, M., Liberman, A.C., et al. Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes. Clin. Exp. Immunol. 2014;177(1):149-160.
http://dx.doi.org/10.1111/cei.12322