Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

To acquire a better understanding of the influence exerted by the presence of Cd + during the process of transforming ferrihydrite to goethite, the morphological and structural changes of several samples obtained by the addition of Cd + to a suspension of nascent goethite were explored, and their chemical reactivity in acid media assessed. The samples (series Gi) were obtained by adding, at different times during the synthesis process, Cd 2+ ions to ferrihydrite (Fe5HO 8.4H 2O) formed in alkaline media. The suspensions were aged for 5 days at 70°C, and the amorphous materials were extracted using a HCl solution (series G HCl-i). The X-ray diffraction (XRD) patterns showed that a goethite-like phase was formed, and chemical analyses indicated that the Cd content, x Cd, increased with the earlier addition of the Cd + ions to the Fe oxyhydroxide suspension. Lattice parameters and cell volume, obtained by the Rietveld simulation of XRD data, indicated an enlargement of the cell parameters of goethite in line with the Cd-for-Fe substitution. In order to determine the influence of oxalate ions on the non-extracted solids, a second set of samples was also prepared that was kept in contact with an ammonium oxalate solution for 4 h (series G ox-i). The dissolution behavior of two series of Cdgoethites and of a third series, obtained from coprecipitation of Fe + and Cd + ions in alkaline media, was observed. Kinetics measurements in 4 M HCl showed that the initial dissolution rate of samples G ox-i decreased with aging time, while the opposite effect was observed for series G HCl-i. Dissolution-time curves were well described by the Kabai equation, and activation energies were calculated using the Arrhenius equation. The results indicate that the presence of Cd during the crystallization process of goethite leads to the formation of a Cd goethite with modified morphology, structural parameters, and chemical reactivity.

Registro:

Documento: Artículo
Título:Effect of Cd(II) on the ripening of ferrihydrite in alkaline media
Autor:Alvarez, M.; Horst, M.F.; Sileo, E.E.; Rueda, E.H.
Filiación:INQUISUR, Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB, Bahía Blanca, Argentina
INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
Palabras clave:Acid reactivity; Aging; Cadmium incorporation; Goethite; HCL extraction; Oxalate extraction; Acid media; Aging time; Alkaline media; Ammonium oxalate; Arrhenius equation; Cell parameter; Cell volume; Crystallization process; Dissolution behavior; Dissolution rates; Ferrihydrites; Goethite; HCl solution; In-line; Kinetics measurements; Oxalate extraction; Oxalate ions; Oxyhydroxides; Rietveld; Structural change; Structural parameter; Synthesis process; XRD; Activation energy; Aging of materials; Ammonium compounds; Cadmium; Chemical analysis; Dissolution; Ions; Suspensions (fluids); X ray diffraction; Cadmium compounds; cadmium; dissolution; extraction method; ferrihydrite; goethite; oxalate; reaction kinetics
Año:2012
Volumen:60
Número:2
Página de inicio:99
Página de fin:107
DOI: http://dx.doi.org/10.1346/CCMN.2012.0600201
Título revista:Clays and Clay Minerals
Título revista abreviado:Clays Clay Miner.
ISSN:00098604
CODEN:CLCMA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00098604_v60_n2_p99_Alvarez

Referencias:

  • Alvarez, M., Sileo, E.E., Rueda, E.H., Effect of Mn(II) incorporation on the transformation of ferrihydrite to goethite (2005) Chemical Geology, 216, pp. 89-97
  • Alvarez, M., Rueda, E.H., Sileo, E.E., Simultaneous incorporation of Mn and Al in the goethite structure (2007) Geochimica Et Cosmochimica Acta, 71, pp. 1009-1020
  • Alvarez, M., Sileo, E.E., Rueda, E.H., Structure and reactivity of synthetic Co-substituted goethites (2008) American Mineralogist, 93, pp. 584-590
  • Benjamin, M.M., Sletten, R.S., Bailey, R.P., Bennett, T., Sorption and filtration of metals using iron-oxide coated sand (1996) Water Research, 30, pp. 2609-2620
  • Cornell, R.M., Giovanoli, R., Effect of manganese on the transformation of ferrihydrite into goethite and jacobsite in alkaline media (1987) Clays and Clay Minerals, 35, pp. 11-20
  • Cornell, R.M., Posner, A.M., Quirk, J.P., Crystal morphology and the dissolution of goethite (1974) Journal of Inorganic and Nuclear Chemistry, 36, pp. 1937-1946
  • Cornell, R.M., Schwertmann, U., (2003) The Iron Oxides, p. 664. , 2 n edition. Wiley-VCH, New York
  • Dollase, W.A., Corrections of intensities for preferred orientations in powder diffractometry: Applications of the March model (1986) Journal of Applied Crystallography, 19, pp. 267-272
  • Filius, J.D., Hiemstra, T., van Riemsdijk, W.H., Adsorption of small weak organic acids on goethite: Modeling of mechanisms (1997) Journal of Colloid and Interface Science, 195, pp. 368-380
  • Finger, L.W., Cox, D.E., Jephcoat, A.P., A correction for powder diffraction peak asymmetry due to axial divergence (1994) Journal of Applied Crystallography, 27, pp. 892-900
  • Ford, R.G., Bertsch, P.M., Farley, K.J., Changes in transition and heavy metal partitioning during hydrous iron oxide aging (1997) Environmental Science & Technology, 31, pp. 2028-2033
  • Gabal, M.A., Non-isothermal kinetics and characterization studies for the decomposition course of CuC 2O 4-CdC 2O 4 mixture in air (2007) Journal of Physics and Chemistry of Solids, 68, pp. 1610-1616
  • Goldschmidt, V.M., The principles of distribution of chemical elements in minerals and rocks (1937) Journal of Chemical Society, pp. 655-673
  • Hem, J.D., Chemistry and occurrence of cadmium and zinc in surface and ground water (1972) Water Resources Research, 8, pp. 661-679
  • Huynh, T., Tong, A.R., Singh, B., Kennedy, B.J., Cd-substituted goethites - A structural investigation by synchrotron X-ray diffraction (2003) Clays and Clay Minerals, 51, pp. 397-402
  • Jones, D.L., Organic acids in the rhizosphere - a critical review (1998) Plant Soil, 205, pp. 25-44
  • Jones, D.L., Brassington, D.S., Sorption of organic acids in acid soils and its implications in the rhizosphere (1998) European Journal of Soil Science, 49, pp. 447-455
  • Kabai, J., Determination of specific activation energies of metal oxides and metal oxide hydrates by measurement of the rate of dissolution (1973) Acta Chimica Academiae Scientarium Hungaricae, 78, pp. 57-73
  • Kaur, N., Singh, B., Kennedy, B., Copper substitution alone and in the presence of chromium, zinc, cadmium and lead in goethite (a-FeOOH) (2009) Clay Minerals, 44, pp. 293-310
  • Kaur, N., Grafe, M., Singh, B., Kennedy, B., Simultaneous incorporation of Cr, Zn, Cd, and Pb in the goethite structure (2009) Clays and Clay Minerals, 57, pp. 234-250
  • Krehula, S., Music, S., The influence of Cd-dopant on the properties of a-FeOOH and a-Fe 2O 3 particles precipitated in highly alkaline media (2007) Journal of Alloys and Compounds, 431, pp. 56-64
  • Larson, A.C., von Dreele, R.B., (1994) General Structure Analysis System (GSAS), pp. 86-748. , Los Alamos National Laboratory report LAUR
  • Lundtorp, K., Jensen, D.L., Sørensen, M.A., Christensen, T.H., Mogensen, E.P.B., Treatment of waste incinerator air-pollution-control residues with FeSO 4: Concept and product characterisation (2002) Waste Management & Research, 20 (1), pp. 69-79
  • Martínez, C.E., McBride, M., Coprecipitates of Cd, Cu, Pb and Zn in iron oxides: Solid phase transformation and metal solubility after aging and thermal treatment (1998) Clays and Clay Minerals, 46, pp. 537-545
  • Posselt, H.S., Weber, W.J., (1971) Environmental Chemistry of Cadmium In Aqueous Systems, , Tech Rept. T-71-1, University of Michigan, Ann Arbor, Michigan, USA
  • Rietveld, H.M., A profile refinement method for nuclear and magnetic structures (1969) Journal of Applied Crystallography B, 25, pp. 925-946
  • Ruan, H.D., Frost, R.L., Kloprogge, J.T., The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite (2001) Spectrochimica Acta Part A, 57, pp. 2575-2586
  • Sadiq, M., (1992) Toxic Metal Chemistry In Marine Environments, p. 390. , Marcel Dekker Inc, New York
  • Schultz, M.F., Benjamin, M.M., Ferguson, J.F., Adsorption and desorption of metals on ferrihydrite: Reversibility of the reaction and sorption properties of the regenerated solid (1987) Environmental Science & Technology, 21, pp. 863-869
  • Schwertmann, U., The influence of aluminium on iron oxides: IX. Dissolution of Al-goethites in 6 M HCl (1984) Clay Minerals, 19, pp. 9-19
  • Schwertmann, U., Cambier, P., Murad, E., Properties of goethites of varying crystallinity (1985) Clays and Clay Minerals, 33, pp. 369-378
  • Schwertmann, U., Cornell, R.M., Iron Oxides in the Laboratory (2000) Preparation and Characterization, p. 188. , 2 nd edition. Wiley, VCH, New York
  • Schwertmann, U., Latham, M., Properties of iron oxides in some New Caledonian oxisols (1986) Geoderma, 39, pp. 105-123
  • Sileo, E.E., Solís, P.S., Paiva-Santos, C.O., Structural study of a series of synthetic goethites obtained in aqueous solutions containing cadmium (II) ions (2003) Powder Diffraction, 18, pp. 49-55
  • Sileo, E.E., Ramos, A.Y., Magaz, G.E., Blesa, M.A., Long-range vs. short-range ordering in synthetic Cr-substituted goethites (2004) Geochimica Et Cosmochimica Acta, 68, pp. 3053-3063
  • Stephens, P.W., Phenomenological model of anisotropic bradening in powder diffraction (1999) Journal of Applied Crystallography, 32, pp. 281-289
  • Sulzberger, B., Laubscher, H., Reactivity of various types of iron (III) (hydr)oxides towards light-induced dissolution (1995) Marine Chemistry, 50, pp. 103-115
  • Szytula, A., Burewicz, A., Dimitrijewic, Z., Krasnicki, S., Rzany, H., Todorovic, J., Wanic, A., Wolski, W., Neutron diffraction studies of α-FeOOH (1968) Physica Status Solidi, 26, pp. 429-434
  • Thompson, P., Cox, D.E., Hastings, J.B., Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al 2O 3 (1987) Journal of Applied Crystallography, 20, pp. 79-83
  • Toby, B.H., EXPGUI, a graphical user interface for GSAS (2001) Journal of Applied Crystallography, 34, pp. 210-213
  • Vogel, A.I., Química Analítica Cuantitativa (1960) Química Analítica Aplicada, Analisis Instrumental Y Analisis De Gases, 2, p. 1173. , Editorial Kapelusz, Buenos Aires, Argentina
  • Wells, M.A., Gilkes, R.J., Fitzpatrick, R.W., Properties and acid dissolution of metal-substituted hematites (2001) Clays and Clay Minerals, 49, pp. 60-72
  • Wells, M.A., Fitzpatrick, R.W., Gilkes, R.J., Thermal and mineral properties of Al-, Cr-, Mn-, Ni- and Ti-substituted goethite (2006) Clays and Clay Minerals, 54, pp. 176-194

Citas:

---------- APA ----------
Alvarez, M., Horst, M.F., Sileo, E.E. & Rueda, E.H. (2012) . Effect of Cd(II) on the ripening of ferrihydrite in alkaline media. Clays and Clay Minerals, 60(2), 99-107.
http://dx.doi.org/10.1346/CCMN.2012.0600201
---------- CHICAGO ----------
Alvarez, M., Horst, M.F., Sileo, E.E., Rueda, E.H. "Effect of Cd(II) on the ripening of ferrihydrite in alkaline media" . Clays and Clay Minerals 60, no. 2 (2012) : 99-107.
http://dx.doi.org/10.1346/CCMN.2012.0600201
---------- MLA ----------
Alvarez, M., Horst, M.F., Sileo, E.E., Rueda, E.H. "Effect of Cd(II) on the ripening of ferrihydrite in alkaline media" . Clays and Clay Minerals, vol. 60, no. 2, 2012, pp. 99-107.
http://dx.doi.org/10.1346/CCMN.2012.0600201
---------- VANCOUVER ----------
Alvarez, M., Horst, M.F., Sileo, E.E., Rueda, E.H. Effect of Cd(II) on the ripening of ferrihydrite in alkaline media. Clays Clay Miner. 2012;60(2):99-107.
http://dx.doi.org/10.1346/CCMN.2012.0600201