Artículo

Morzan, U.N.; Alonso De Armiño, D.J.; Foglia, N.O.; Ramírez, F.; González Lebrero, M.C.; Scherlis, D.A.; Estrin, D.A. "Spectroscopy in Complex Environments from QM-MM Simulations" (2018) Chemical Reviews. 118(7):4071-4113
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The applications of multiscale quantum-classical (QM-MM) approaches have shown an extraordinary expansion and diversification in the last couple of decades. A great proportion of these efforts have been devoted to interpreting and reproducing spectroscopic experiments in a variety of complex environments such as solutions, interfaces, and biological systems. Today, QM-MM-based computational spectroscopy methods constitute accomplished tools with refined predictive power. The present review summarizes the advances that have been made in QM-MM approaches to UV-visible, Raman, IR, NMR, electron paramagnetic resonance, and Mössbauer spectroscopies, providing in every case an introductory discussion of the corresponding methodological background. A representative number of applications are presented to illustrate the historical evolution and the state of the art of this field, highlighting the advantages and limitations of the available methodologies. Finally, we present our view of the perspectives and open challenges in the field. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Spectroscopy in Complex Environments from QM-MM Simulations
Autor:Morzan, U.N.; Alonso De Armiño, D.J.; Foglia, N.O.; Ramírez, F.; González Lebrero, M.C.; Scherlis, D.A.; Estrin, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II C1428EHA, Buenos Aires, Argentina
Palabras clave:Biology; Nuclear magnetic resonance; Spectroscopic analysis; Complex environments; Computational spectroscopy; Historical evolutions; Multi-scale; Predictive power; Quantum-classical; Ssbauer spectroscopies; State of the art; Paramagnetic resonance
Año:2018
Volumen:118
Número:7
Página de inicio:4071
Página de fin:4113
DOI: http://dx.doi.org/10.1021/acs.chemrev.8b00026
Título revista:Chemical Reviews
Título revista abreviado:Chem. Rev.
ISSN:00092665
CODEN:CHREA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00092665_v118_n7_p4071_Morzan

Referencias:

  • Woodward, R., Structure and the absorption spectra of, -unsaturated ketones (1941) J. Am. Chem. Soc., 63, pp. 1123-1126
  • Fieser, L.F., Fieser, M., Rajagopalan, S., Absorption spectroscopy and the structures of the diosterols (1948) J. Org. Chem., 13, pp. 800-806
  • Monard, G., Merz, K.J., Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems (1999) Acc. Chem. Res., 32, pp. 904-911
  • Eichinger, M., Tavan, P., Hutter, J., Parrinello, M., A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields (1999) J. Chem. Phys., 110, pp. 10452-10467
  • Crespo, A., Scherlis, D.A., Martí, M.A., Ordejón, P., Roitberg, A.E., Estrin, D.A., A DFT-based QM-MM approach designed for the treatment of large molecular systems: Application to chorismate mutase (2003) J. Phys. Chem. B, 107, pp. 13728-13736
  • Senn, H., Thiel, W., QM/MM methods for biomolecular systems (2009) Angew. Chem., Int. Ed., 48, pp. 1198-1229
  • Liu, M., Wang, Y., Chen, Y., Field, M.J., Gao, J., QM/MM through the 1990s: The first twenty years of method development and applications (2014) Isr. J. Chem., 54, pp. 1250-1263
  • Warshel, A., Levitt, M., Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme (1976) J. Mol. Biol., 103, pp. 227-249
  • Bauschlicher, C.W., Langhoff, S.R., The study of molecular spectroscopy by ab initio methods (1991) Chem. Rev., 91, pp. 701-718
  • Szalay, P.G., Müller, T., Gidofalvi, G., Lischka, H., Shepard, R., Multiconfiguration self-consistent field and multireference configuration interaction methods and applications (2012) Chem. Rev., 112, pp. 108-181
  • Pulay, P., Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules (1969) Mol. Phys., 17, pp. 197-204
  • Bloino, J., Baiardi, A., Biczysko, M., Aiming at an accurate prediction of vibrational and electronic spectra for medium-to-large molecules: An overview (2016) Int. J. Quantum Chem., 116, pp. 1543-1574
  • Mills, I.M., Vibration-Rotation Structure in Asymmetric- and Symmetric-Top Molecules (1972) Molecular Spectroscopy: Modern Research, 1, pp. 115-140. , Rao, K. N., Mathews, C. W.; Academic Press: New York
  • Čarsky, P., Spirko, V., Hess, B., Jr., Schaad, L., Ab initio calculations of vibrational spectra of nonrigid molecules (1990) J. Phys. Chem., 94, pp. 5493-5496
  • Barone, V., Accurate vibrational spectra of large molecules by density functional computations beyond the harmonic approximation: The case of azabenzenes (2004) J. Phys. Chem. A, 108, pp. 4146-4150
  • Christiansen, O., Selected new developments in vibrational structure theory: Potential construction and vibrational wave function calculations (2012) Phys. Chem. Chem. Phys., 14, pp. 6672-6687
  • Van Der Kamp, M., Mulholland, A., Combined quantum mechanics/molecular mechanics (QM/MM) in computational enzymology (2013) Biochemistry, 52, pp. 2708-2728
  • Lin, H., Truhlar, D., QM/MM: What have we learned, where are we, and where do we go from here? (2007) Theor. Chem. Acc., 117, pp. 185-199
  • Brunk, E., Rothlisberger, U., Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states (2015) Chem. Rev., 115, pp. 6217-6263
  • Chung, L.W., Sameera, W.M.C., Ramozzi, R., Page, A.J., Hatanaka, M., Petrova, G.P., Harris, T.V., Morokuma, K., The ONIOM method and its applications (2015) Chem. Rev., 115, pp. 5678-5796
  • Bakowies, D., Thiel, W., Hybrid models for combined quantum mechanical and molecular mechanical approaches (1996) J. Phys. Chem., 100, pp. 10580-10594
  • Leach, A.R., (2001) Molecular Modelling: Principles and Applications, , 2 nd ed.; Pearson Education: Harlow, England
  • Pettitt, B.M., Karplus, M., Role of electrostatics in the structure, energy and dynamics of biomolecules: A model study of N-methylalanylacetamide (1985) J. Am. Chem. Soc., 107, pp. 1166-1173
  • Weiner, S.J., Singh, U.C., Kollman, P.A., Simulation of formamide hydrolysis by hydroxide ion in the gas phase and in aqueous solution (1985) J. Am. Chem. Soc., 107, pp. 2219-2229
  • Hunt, D., Sanchez, V.M., Scherlis, D.A., A quantum-mechanics molecular-mechanics scheme for extended systems (2016) J. Phys.: Condens. Matter, 28
  • Dapprich, S., Komáromi, I., Byun, K., Morokuma, K., Frisch, M.J., A new ONIOM implementation in Gaussian98. Part I. the calculation of energies, gradients, vibrational frequencies and electric field derivatives (1999) J. Mol. Struct.: THEOCHEM, 461-462, pp. 1-21
  • Drude, P., (1902) The Theory of Optics, , Longmans, Green, and Co.: New York
  • Thompson, M.A., QM/MMpol: A Consistent model for solute/solvent polarization. Application to the aqueous solvation and spectroscopy of formaldehyde, acetaldehyde, and acetone (1996) J. Phys. Chem., 100, pp. 14492-14507
  • Gagliardi, L., Lindh, R., Karlström, G., Local properties of quantum chemical systems: The LoProp approach (2004) J. Chem. Phys., 121, pp. 4494-4500
  • Söderhjelm, P., Husberg, C., Strambi, A., Olivucci, M., Ryde, U., Protein influence on electronic spectra modeled by multipoles and polarizabilities (2009) J. Chem. Theory Comput., 5, pp. 649-658
  • Olsen, J.M., Aidas, K., Kongsted, J., Excited states in solution through polarizable embedding (2010) J. Chem. Theory Comput., 6, pp. 3721-3734
  • Sneskov, K., Schwabe, T., Kongsted, J., Christiansen, O., The polarizable embedding coupled cluster method (2011) J. Chem. Phys., 134
  • Gordon, M.S., Fedorov, D.G., Pruitt, S.R., Slipchenko, L.V., Fragmentation methods: A route to accurate calculations on large systems (2012) Chem. Rev., 112, pp. 632-672
  • Beerepoot, M.T., Steindal, A.H., Ruud, K., Olsen, J.M.H., Kongsted, J., Convergence of environment polarization effects in multiscale modeling of excitation energies (2014) Comput. Theor. Chem., 1040-1041, pp. 304-311
  • Yoo, S., Zahariev, F., Sok, S., Gordon, M.S., Solvent effects on optical properties of molecules: A combined time-dependent density functional theory/effective fragment potential approach (2008) J. Chem. Phys., 129
  • Ma, H., Ma, Y., Solvent effect on electronic absorption, fluorescence, and phosphorescence of acetone in water: Revisited by quantum mechanics/molecular mechanics (QM/MM) simulations (2013) J. Chem. Phys., 138
  • Zeng, Q., Liu, J., Liang, W., Molecular properties of excited electronic state: Formalism, implementation, and applications of analytical second energy derivatives within the framework of the time-dependent density functional theory/molecular mechanics (2014) J. Chem. Phys., 140, p. 18A506
  • Carnimeo, I., Cappelli, C., Barone, V., Analytical gradients for MP2, double hybrid functionals, and TD-DFT with polarizable embedding described by fluctuating charges (2015) J. Comput. Chem., 36, pp. 2271-2290
  • Nakano, H., Sato, H., An ab initio QM/MM-based approach to efficiently evaluate vertical excitation energies in condensed phases including the nonequilibrium solvation effect (2016) J. Phys. Chem. B, 120, pp. 1670-1678
  • Li, Q., Mennucci, B., Robb, M.A., Blancafort, L., Curutchet, C., Polarizable QM/MM multiconfiguration self-consistent field approach with state-specific corrections: Environment effects on cytosine absorption spectrum (2015) J. Chem. Theory Comput., 11, pp. 1674-1682
  • Li, J., D'Avino, G., Duchemin, I., Beljonne, D., Blase, X., Combining the many-body GW formalism with classical polarizable models: Insights on the electronic structure of molecular solids (2016) J. Phys. Chem. Lett., 7, pp. 2814-2820
  • Ghosh, D., Hybrid equation-of-motion coupled-cluster/effective fragment potential method: A route toward understanding photoprocesses in the condensed phase (2017) J. Phys. Chem. A, 121, pp. 741-752
  • Gordon, M.S., Freitag, M.A., Bandyopadhyay, P., Jensen, J.H., Kairys, V., Stevens, W.J., The effective fragment potential method: A QM-based MM approach to modeling environmental effects in chemistry (2001) J. Phys. Chem. A, 105, pp. 293-307
  • Day, P.N., Jensen, J.H., Gordon, M.S., Webb, S.P., Stevens, W.J., Krauss, M., Garmer, D., Cohen, D., An effective fragment method for modeling solvent effects in quantum mechanical calculations (1996) J. Chem. Phys., 105, pp. 1968-1986
  • Stone, A., Distributed multipole analysis, or how to describe a molecular charge distribution (1981) Chem. Phys. Lett., 83, pp. 233-239
  • Ghosh, D., Kosenkov, D., Vanovschi, V., Williams, C.F., Herbert, J.M., Gordon, M.S., Schmidt, M.W., Krylov, A.I., Noncovalent interactions in extended systems described by the effective fragment potential method: Theory and application to nucleobase oligomers (2010) J. Phys. Chem. A, 114, pp. 12739-12754
  • Defusco, A., Minezawa, N., Slipchenko, L.V., Zahariev, F., Gordon, M.S., Modeling solvent effects on electronic excited states (2011) J. Phys. Chem. Lett., 2, pp. 2184-2192
  • Gurunathan, P.K., Acharya, A., Ghosh, D., Kosenkov, D., Kaliman, I., Shao, Y., Krylov, A.I., Slipchenko, L.V., Extension of the effective fragment potential method to macromolecules (2016) J. Phys. Chem. B, 120, pp. 6562-6574. , PMID: 27314461
  • Sałek, P., Vahtras, O., Helgaker, T., Ågren, H., Density-functional theory of linear and nonlinear time-dependent molecular properties (2002) J. Chem. Phys., 117, pp. 9630-9645
  • Curutchet, C., Muñoz-Losa, A., Monti, S., Kongsted, J., Scholes, G.D., Mennucci, B., Electronic energy transfer in condensed phase studied by a polarizable QM/MM model (2009) J. Chem. Theory Comput., 5, pp. 1838-1848
  • Rick, S.W., Stuart, S.J., Berne, B.J., Dynamical fluctuating charge force fields: Application to liquid water (1994) J. Chem. Phys., 101, pp. 6141-6156
  • Elola, M.D., Estrin, D.A., Laria, D., Hybrid quantum classical molecular dynamics simulation of the proton-transfer reaction of HO- with HBr in aqueous clusters (1999) J. Phys. Chem. A, 103, pp. 5105-5112
  • González Lebrero, M.C., Perissinotti, L.L., Estrin, D.A., Solvent effects on peroxynitrite structure and properties from QM/MM simulations (2005) J. Phys. Chem. A, 109, pp. 9598-9604
  • Estrin, D., Corongiu, G., Clementi, E., (1995) Methods and Techniques in Computational Chemistry: METECC-94, pp. 541-567. , Clementi, E., Cagliari, I. S., Eds.; STEF: Cagliari, Italy
  • Pagliai, M., Mancini, G., Carnimeo, I., De Mitri, N., Barone, V., Electronic absorption spectra of pyridine and nicotine in aqueous solution with a combined molecular dynamics and Polarizable QM/MM Apprach (2017) J. Comput. Chem., 38, pp. 319-335
  • Lipparini, F., Barone, V., Polarizable force fields and polarizable continuum model: A fluctuating charges/PCM approach. 1. Theory and implementation (2011) J. Chem. Theory Comput., 7, pp. 3711-3724
  • Ohno, K., Some remarks on the Pariser-Parr-Pople method (1964) Theor. Chem. Acc., 2, pp. 219-227
  • Giovannini, T., Olszòwka, M., Cappelli, C., Effective fully polarizable QM/MM approach to model vibrational circular dichroism spectra of systems in aqueous solution (2016) J. Chem. Theory Comput., 12, pp. 5483-5492
  • Amadei, A., D'Alessandro, M., D'Abramo, M., Aschi, M., Theoretical characterization of electronic states in interacting chemical systems (2009) J. Chem. Phys., 130
  • Amadei, A., D'Alessandro, M., Paci, M., Di Nola, A., Aschi, M., Effect of a point mutation on the reactivity of CuZn superoxide dismutase: A theoretical study (2006) J. Phys. Chem. B, 110, pp. 7538-7544
  • Carrillo-Parramon, O., Del Galdo, S., Aschi, M., Mancini, G., Amadei, A., Barone, V., Flexible and comprehensive implementation of MD-PMM approach in a general and robust code (2017) J. Chem. Theory Comput., 13, pp. 5506-5514
  • Carrillo-Parramon, O., Del Galdo, S., Aschi, M., Mancini, G., Amadei, A., Barone, V., Flexible and comprehensive implementation of MD-PMM approach in a general and robust code (2017) J. Chem. Theory Comput., 13, pp. 5506-5514
  • Frisch, M.J., (2016) Gaussian 16, , revision A.03; Gaussian Inc.: Wallingford CT
  • D'Alessandro, M., Aschi, M., Mazzuca, C., Palleschi, A., Amadei, A., Theoretical modeling of UV-Vis absorption and emission spectra in liquid state systems including vibrational and conformational effects: The vertical transition approximation (2013) J. Chem. Phys., 139
  • D'Abramo, M., Aschi, M., Amadei, A., Theoretical modeling of UV-Vis absorption and emission spectra in liquid state systems including vibrational and conformational effects: Explicit treatment of the vibronic transitions (2014) J. Chem. Phys., 140
  • Gao, J., Amara, P., Alhambra, C., Field, M., A generalized hybrid orbital (GHO) method for the treatment of boundary atoms in combined QM/MM calculations (1998) J. Phys. Chem. A, 102, pp. 4714-4721
  • Thery, V., Rinaldi, D., Rivail, J.L., Maigret, B., Ferenczy, G.G., Quantum mechanical computations on very large molecular systems: The local self-consistent field method (1994) J. Comput. Chem., 15, pp. 269-282
  • Monari, A., Rivail, J., Assfeld, X., Theoretical Modeling of large molecular systems. Advances in the local self consistent field method for mixed quantun mechanisns/ molecular mechanics calculations (2013) Acc. Chem. Res., 46, pp. 596-603
  • Laio, A., Vandevondele, J., Rothlisberger, U., A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations (2002) J. Chem. Phys., 116, pp. 6941-6947
  • Komin, S., Sebastiani, D., Optimization of capping potentials for spectroscopic parameters in hybrid quantum mechanical/mechanical modeling calculations (2009) J. Chem. Theory Comput., 5, pp. 1490-1498
  • Singh, U.C., Kollman, P.A., A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl+ Cl- exchange reaction and gas phase protonation of polyethers (1986) J. Comput. Chem., 7, pp. 718-730
  • Field, M.J., Bash, P.A., Karplus, M., A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations (1990) J. Comput. Chem., 11, pp. 700-733
  • Antes, I., Thiel, W., Adjusted connection atom for combined quantum mechanical and molecular mechanical methods (1999) J. Phys. Chem. A, 103, pp. 9290-9295
  • Sherwood, P., De Vries, A.H., Collins, S.J., Greatbanks, S.P., Burton, N.A., Vincent, M., Hillier, I., Computer simulation of zeolite structure and reactivity using embedded cluster methods (1997) Faraday Discuss., 106, pp. 79-92
  • Monari, A., Very, T., Rivail, J., Assfeld, X., Effects of mutations on the absoprtion spectra of copper proteins: A QM/MM study (2012) Theor. Chem. Acc., 131, p. 1221
  • Duster, A.W., Wang, C., Garza, C.M., Miller, D.E., Lin, H., Adaptive quantum/molecular mechanics: What have we learned, where are we, and where do we go from here? (2017) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 7, p. e1310
  • Zheng, M., Waller, M.P., Adaptive quantum mechanics/molecular mechanics methods (2016) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 6, pp. 369-385
  • Pezeshki, S., Lin, H., Recent developments in QM/MM methods towards open-boundary multi-scale simulations (2015) Mol. Simul., 41, pp. 168-189
  • Runge, E., Gross, E.K.U., Density-functional theory for time-dependent systems (1984) Phys. Rev. Lett., 52, pp. 997-1000
  • Marques, M.A.L., Ullrich, C.A., Nogueira, F., Rubio, A., Burke, K., Gross, E.K.U., (2006) Time-Dependent Density Functional Theory, , Springer: Berlin
  • Ullrich, C.A., (2012) Time-Dependent Density-Functional Theory: Concepts and Applications, , Oxford University Press: Oxford, U.K
  • Parr, R.G., Yang, W., Density-functional theory of the electronic structure of molecules (1995) Annu. Rev. Phys. Chem., 46, pp. 701-728
  • Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, p. 3865
  • Becke, A.D., A new mixing of Hartree-Fock and local density-functional theories (1993) J. Chem. Phys., 98, pp. 1372-1377
  • Castro, A., Marques, M.A.L., Rubio, A., Propagators for the time-dependent Kohn-Sham equations (2004) J. Chem. Phys., 121, pp. 3425-3433
  • Yabana, K., Bertsch, G., Time-dependent local-density approximation in real time (1996) Phys. Rev. B: Condens. Matter Mater. Phys., 54, p. 4484
  • Lopata, K., Govind, N., Modeling fast electron dynamics with real-time time-dependent density functional theory: Application to small molecules and chromophores (2011) J. Chem. Theory Comput., 7, pp. 1344-1355
  • Chen, H., McMahon, J.M.J., Ratner, M.A., Schatz, G.C., Classical electrodynamics coupled to quantum mechanics for calculation of molecular optical properties: A RT-TDDFT/FDTD approach (2010) J. Phys. Chem. C, 114, pp. 14384-14392
  • Masiello, D.J., Schatz, G.C., On the linear response and scattering of an interacting molecule-metal system (2010) J. Chem. Phys., 132
  • Morzan, U.N., Ramírez, F.F., Oviedo, M.B., Sánchez, C.G., Scherlis, D.A., Lebrero, M.C.G., Electron dynamics in complex environments with real-time time dependent density functional theory in a QM-MM framework (2014) J. Chem. Phys., 140
  • Bruner, A., Lamaster, D., Lopata, K., Accelerated broadband spectra using transition dipole decomposition and Pad approximants (2016) J. Chem. Theory Comput., 12, pp. 3741-3750
  • Barone, V., Bloino, J., Biczysko, M., Santoro, F., Fully integrated approach to compute vibrationally resolved optical spectra: From small molecules to macrosystems (2009) J. Chem. Theory Comput., 5, pp. 540-554
  • Franck, J., Dymond, E.G., Elementary processes of photochemical reactions (1926) Trans. Faraday Soc., 21, p. 536
  • Condon, E., A theory of intensity distribution in band systems (1926) Phys. Rev., 28, pp. 1182-1201
  • Condon, E.U., Nuclear motions associated with electron transitions in diatomic molecules (1928) Phys. Rev., 32, pp. 858-872
  • Duschinsky, F., The importance of the electron spectrum in multi atomic molecules. Concerning the Franck-Condon principle (1937) Acta Physicochim. URSS, 7, pp. 551-566
  • Manneback, C., Computation of the intensities of vibrational spectra of electronic bands in diatomic molecules (1951) Physica, 17, pp. 1001-1010
  • Doktorov, E., Malkin, I., Man'Ko, V., Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck-Condon principle (1977) J. Mol. Spectrosc., 64, pp. 302-326
  • Ruhoff, P.T., Recursion relations for multi-dimensional Franck-Condon overlap integrals (1994) Chem. Phys., 186, pp. 355-374
  • Santoro, F., Improta, R., Lami, A., Bloino, J., Barone, V., Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution (2007) J. Chem. Phys., 126
  • Santoro, F., Lami, A., Improta, R., Bloino, J., Barone, V., Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg-Teller effect: The Qx band of porphyrin as a case study (2008) J. Chem. Phys., 128
  • Tapia, O., Silvi, B., Solvent effects on the structure and the electronic properties of simple molecules. A MINDO/3-SCRF-MO study (1980) J. Phys. Chem., 84, pp. 2646-2652
  • Karelson, M.M., Zerner, M.C., Theoretical treatment of solvent effects on electronic spectroscopy (1992) J. Phys. Chem., 96, pp. 6949-6957
  • Gao, J., Monte Carlo quantum mechanical-configuration interaction and molecular mechanics simulation of solvent effects on the n → π∗ blue shift of acetone (1994) J. Am. Chem. Soc., 116, pp. 9324-9328
  • Tomasi, J., Mennucci, B., Cammi, R., Quantum mechanical continuum solvation models (2005) Chem. Rev., 105, pp. 2999-3094
  • Stratt, R.M., Adams, J.E., Solvation by nonpolar solvents: Shifts of solute electronic spectra (1993) J. Chem. Phys., 99, pp. 775-788
  • Eilmes, A., Solvatochromic probe in molecular solvents: Implicit versus explicit solvent model (2014) Theor. Chem. Acc., 133, p. 1538
  • Monari, A., Rivail, J.-L., Assfeld, X., Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations (2013) Acc. Chem. Res., 46, pp. 596-603
  • Isborn, C.M., Mar, B.D., Curchod, B.F.E., Tavernelli, I., Martínez, T.J., The charge transfer problem in density functional theory calculations of aqueously solvated molecules (2013) J. Phys. Chem. B, 117, pp. 12189-12201
  • Provorse, M.R., Peev, T., Xiong, C., Isborn, C.M., Convergence of excitation energies in mixed quantum and classical solvent: Comparison of continuum and point charge models (2016) J. Phys. Chem. B, 120, pp. 12148-12159
  • Pedone, A., Bloino, J., Monti, S., Prampolini, G., Barone, V., Absorption and emission UV-Vis spectra of the TRITC fluorophore molecule in solution: A quantum mechanical study (2010) Phys. Chem. Chem. Phys., 12, pp. 1000-1006
  • Steindal, A.H., Ruud, K., Frediani, L., Aidas, K., Kongsted, J., Excitation energies in solution: The fully polarizable QM/MM/PCM method (2011) J. Phys. Chem. B, 115, pp. 3027-3037
  • Sneskov, K., Schwabe, T., Christiansen, O., Kongsted, J., Scrutinizing the effects of polarization in QM/MM excited state calculations (2011) Phys. Chem. Chem. Phys., 13, pp. 18551-18560
  • Murugan, N.A., Jha, P.C., Rinkevicius, Z., Ruud, K., Ågren, H., Solvatochromic shift of phenol blue in water from a combined Car-Parrinello molecular dynamics hybrid quantum mechanics-molecular mechanics and ZINDO approach (2010) J. Chem. Phys., 132
  • Isborn, C.M., Götz, A.W., Clark, M.A., Walker, R.C., Martínez, T.J., Electronic absorption spectra from MM and ab Initio QM/MM Molecular Dynamics: Environmental effects on the absorption spectrum of photoactive yellow protein (2012) J. Chem. Theory Comput., 8, pp. 5092-5106
  • Pavone, M., Brancato, G., Morelli, G., Barone, V., Spectroscopic properties in the liquid phase: Combining high-level ab initio calculations and classical molecular dynamics (2006) ChemPhysChem, 7, pp. 148-156
  • Chandrasekaran, S., Aghtar, M., Valleau, S., Aspuru-Guzik, A., Kleinekathöfer, U., Influence of force fields and quantum chemistry approach on spectral densities of BChl a in solution and in FMO proteins (2015) J. Phys. Chem. B, 119, pp. 9995-10004
  • Marenich, A.V., Cramer, C.J., Truhlar, D.G., Sorting out the relative contributions of electrostatic polarization, dispersion, and hydrogen bonding to solvatochromic shifts on vertical electronic excitation energies (2010) J. Chem. Theory Comput., 6, pp. 2829-2844
  • Zuehlsdorff, T.J., Haynes, P.D., Hanke, F., Payne, M.C., Hine, N.D.M., Solvent effects on electronic excitations of an organic chromophore (2016) J. Chem. Theory Comput., 12, pp. 1853-1861
  • Röhrig, U.F., Frank, I., Hutter, J., Laio, A., Vandevondele, J., Rothlisberger, U., QM/MM Car-Parrinello molecular dynamics study of the solvent effects on the ground state and on the first excited singlet state of acetone in water (2003) ChemPhysChem, 4, pp. 1177-1182
  • Sulpizi, M., Carloni, P., Hutter, J., Rothlisberger, U., A hybrid TDDFT/MM investigation of the optical properties of aminocoumarins in water and acetonitrile solution (2003) Phys. Chem. Chem. Phys., 5, pp. 4798-4805
  • Aidas, K., Møgelhøj, A., Nilsson, E.J.K., Johnson, M.S., Mikkelsen, K.V., Christiansen, O., Söderhjelm, P., Kongsted, J., On the performance of quantum chemical methods to predict solvatochromic effects: The case of acrolein in aqueous solution (2008) J. Chem. Phys., 128
  • Liu, J., Two more approaches for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics (2011) J. Chem. Phys., 134
  • Liu, J., Miller, W.H., An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. II. Thermal correlation functions (2011) J. Chem. Phys., 134
  • Svoboda, O., Ončák, M., Slavíček, P., Simulations of light induced processes in water based on ab initio path integrals molecular dynamics. I. Photoabsorption (2011) J. Chem. Phys., 135
  • Virshup, A.M., Punwong, C., Pogorelov, T.V., Lindquist, B.A., Ko, C., Martínez, T.J., Photodynamics in complex environments: Ab initio multiple spawning quantum mechanical/molecular mechanical dynamics (2009) J. Phys. Chem. B, 113, pp. 3280-3291
  • Parac, M., Doerr, M., Marian, C.M., Thiel, W., QM/MM calculation of solvent effects on absorption spectra of guanine (2010) J. Comput. Chem., 31, pp. 90-106
  • Warshel, A., Calculations of chemical processes in solutions (1979) J. Phys. Chem., 83, pp. 1640-1652
  • Warshel, A., Karplus, M., Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization (1972) J. Am. Chem. Soc., 94, pp. 5612-5625
  • Warshel, A., Weiss, R.M., Energetics of heme-protein interactions in hemoglobin (1981) J. Am. Chem. Soc., 103, pp. 446-451
  • Blair, J.T., Krogh-Jespersen, K., Levy, R.M., Solvent effects on optical absorption spectra: The 1A1 → 1A2 transition of formaldehyde in water (1989) J. Am. Chem. Soc., 111, pp. 6948-6956
  • Debolt, S.E., Kollman, P.A., A theoretical examination of solvatochromism and solute-solvent structuring in simple alkyl carbonyl compounds. Simulations using statistical mechanical free energy perturbation methods (1990) J. Am. Chem. Soc., 112, pp. 7515-7524
  • Luzhkov, V., Warshel, A., Microscopic calculations of solvent effects on absorption spectra of conjugated molecules (1991) J. Am. Chem. Soc., 113, pp. 4491-4499
  • De Vries, A.H., Van Duijnen, P.T., Solvatochromism of the π∗ ← n transition of acetone by combined quantum mechanical-classical mechanical calculations (1996) Int. J. Quantum Chem., 57, pp. 1067-1076
  • Sánchez, M.L., Martín, M.E., Aguilar, M.A., Olivares Del Valle, F.J., Solvent effects on the 1(n, π∗) transition of formaldehyde in liquid water. A QM/MM study using the mean field approximation (1999) Chem. Phys. Lett., 310, pp. 195-200
  • Martín, M.E., Sánchez, M.L., Olivares Del Valle, F.J., Aguilar, M.A., A multiconfiguration self-consistent field/molecular dynamics study of the (n → π∗)1 transition of carbonyl compounds in liquid water (2000) J. Chem. Phys., 113, pp. 6308-6315
  • Brancato, G., Rega, N., Barone, V., A quantum mechanical/molecular dynamics/mean field study of acrolein in aqueous solution: Analysis of H bonding and bulk effects on spectroscopic properties (2006) J. Chem. Phys., 125
  • Öhrn, A., Karlström, G., Hybrid Monte Carlo simulations of vertical electronic transitions in acetone in aqueous solution (2007) Theor. Chem. Acc., 117, pp. 441-449
  • Orozco-González, Y., Coutinho, K., Canuto, S., Excited state electronic polarization and reappraisal of the n ← π∗ emission of acetone in water (2010) Chem. Phys. Lett., 499, pp. 108-112
  • Aidas, K., Mikkelsen, K.V., Mennucci, B., Kongsted, J., Fluorescence and phosphorescence of acetone in neat liquid and aqueous solution studied by QM/MM and PCM approaches (2011) Int. J. Quantum Chem., 111, pp. 1511-1520
  • Alberti, S.F., Echave, J., Theoretical study of the solvatochromism of a merocyanine dye (1997) Chem. Phys., 223, pp. 183-194
  • Arul Murugan, N., Kongsted, J., Rinkevicius, Z., Aidas, K., Ågren, H., Modeling the structure and absorption spectra of stilbazolium merocyanine in polar and nonpolar solvents using hybrid QM/MM techniques (2010) J. Phys. Chem. B, 114, pp. 13349-13357
  • Murugan, N.A., Kongsted, J., Rinkevicius, Z., Ågren, H., Demystifying the solvatochromic reversal in Brookers merocyanine dye (2011) Phys. Chem. Chem. Phys., 13, pp. 1290-1292
  • Murugan, N.A., Chakrabarti, S., Ågren, H., Solvent dependence of structure, charge distribution, and absorption spectrum in the photochromic merocyanine- spiropyran pair (2011) J. Phys. Chem. B, 115, pp. 4025-4032
  • Silva, D.L., Murugan, N.A., Kongsted, J., Ågren, H., Canuto, S., Self-aggregation and optical absorption of stilbazolium merocyanine in chloroform (2014) J. Phys. Chem. B, 118, pp. 1715-1725
  • Franco, L.R., Brandão, I., Fonseca, T.L., Georg, H.C., Elucidating the structure of merocyanine dyes with the ASEC-FEG method. Phenol blue in solution (2016) J. Chem. Phys., 145
  • Murugan, N.A., Rinkevicius, Z., Ågren, H., Modeling solvatochromism of Nile red in water (2011) Int. J. Quantum Chem., 111, pp. 1521-1530
  • Singh, G., Chamberlin, A.C., Zhekova, H.R., Noskov, S.Y., Tieleman, D.P., Two-dimensional potentials of mean force of nile red in intact and damaged model bilayers. Application to calculations of fluorescence spectra (2016) J. Chem. Theory Comput., 12, pp. 364-371
  • Pearl, G.M., Zerner, M.C., A theoretical examination of the solvent dependence of the metal-to-ligand charge-transfer band in amino ruthenium complexes (1999) J. Am. Chem. Soc., 121, pp. 399-404
  • Tong, G.S.M., Kui, S.C.F., Chao, H., Zhu, N., Che, C., The 3[ndσ∗(n+1)pσ] emissions of linear silver (I) and gold (I) chains with bridging phosphine ligands (2009) Chem. - Eur. J., 15, pp. 10777-10789
  • Chantzis, A., Very, T., Daniel, C., Monari, A., Assfeld, X., Theoretical evidence of photo-induced charge transfer from DNA to intercalated ruthenium (II) organometallic complexes (2013) Chem. Phys. Lett., 578, pp. 133-137
  • Chantzis, A., Very, T., Despax, S., Issenhuth, J., Boeglin, A., Hébraud, P., Pfeffer, M., Assfeld, X., UV-vis absorption spectrum of a novel Ru(II) complex intercalated in DNA: [Ru(2,2-bipy)(dppz)(2,2-ArPy)]+ (2014) J. Mol. Model., 20, p. 2082
  • Aono, S., Nakagaki, M., Kurahashi, T., Fujii, H., Sakaki, S., Theoretical study of one-electron oxidized Mn (III)-and Ni (II)-Salen complexes: Localized vs delocalized ground and excited states in solution (2014) J. Chem. Theory Comput., 10, pp. 1062-1073
  • Govind, N., Valiev, M., Jensen, L., Kowalski, K., Excitation energies of zinc porphyrin in aqueous solution using long-range corrected time-dependent density functional theory (2009) J. Phys. Chem. A, 113, pp. 6041-6043
  • Fan, P.D., Valiev, M., Kowalski, K., Large-scale parallel calculations with combined coupled cluster and molecular mechanics formalism: Excitation energies of zinc-porphyrin in aqueous solution (2008) Chem. Phys. Lett., 458, pp. 205-209
  • Röhr, M.I., Petersen, J., Wohlgemuth, M., Bonačić-Kouteckỳ, V., Mitrić, R., Nonlinear absorption dynamics using field-induced surface hopping: Zinc porphyrin in water (2013) ChemPhysChem, 14, pp. 1377-1386
  • Plasser, F., Aquino, A.J.A., Hase, W.L., Lischka, H., UV absorption spectrum of alternating DNA duplexes. Analysis of excitonic and charge transfer interactions (2012) J. Phys. Chem. A, 116, pp. 11151-11160
  • Niskanen, J., Murugan, N.A., Rinkevicius, Z., Vahtras, O., Li, C., Monti, S., Carravetta, V., Ågren, H., Hybrid density functional-molecular mechanics calculations for core-electron binding energies of glycine in water solution (2013) Phys. Chem. Chem. Phys., 15, pp. 244-254
  • Voityuk, A.A., Effects of dynamic disorder on exciton delocalization and photoinduced charge separation in DNA (2013) Photochem. Photobiol. Sci., 12, pp. 1303-1309
  • Zhao, Y., Cao, Z., Absorption spectra of nucleic acid bases in water environment: Insights into from combined QM/MM and cluster-continuum model calculations (2013) J. Theor. Comput. Chem., 12
  • Etienne, T., Gattuso, H., Monari, A., Assfeld, X., QM/MM modeling of Harmane cation fluorescence spectrum in water solution and interacting with DNA (2014) Comput. Theor. Chem., 1040-1041, pp. 367-372
  • Spata, V.A., Matsika, S., Role of excitonic coupling and charge-transfer states in the absorption and CD spectra of Adenine-based oligonucleotides investigated through QM/MM simulations (2014) J. Phys. Chem. A, 118, pp. 12021-12030
  • Sun, G., Ju, M., Zang, H., Zhao, Y., Liang, W., Mechanisms of large Stokes shift and aggregation-enhanced emission of osmapentalyne cations in solution: Combined MD simulations and QM/MM calculations (2015) Phys. Chem. Chem. Phys., 17, pp. 24438-24445
  • Altavilla, S.F., Segarra-Martí, J., Nenov, A., Conti, I., Rivalta, I., Garavelli, M., Deciphering the photochemical mechanisms describing the UV-induced processes occurring in solvated guanine monophosphate (2015) Front. Chem., 3, p. 29
  • Sakata, T., Kawashima, Y., Nakano, H., Solvent effect on the absorption spectra of coumarin 120 in water: A combined quantum mechanical and molecular mechanical study (2011) J. Chem. Phys., 134
  • Cerezo, J., Avila Ferrer, F.J., Prampolini, G., Santoro, F., Modeling solvent broadening on the vibronic spectra of a series of coumarin dyes. from implicit to explicit solvent models (2015) J. Chem. Theory Comput., 11, pp. 5810-5825
  • Cerezo, J., Santoro, F., Prampolini, G., Comparing classical approaches with empirical or quantum-mechanically derived force fields for the simulation of electronic lineshapes: Application to coumarin dyes (2016) Theor. Chem. Acc., 135, p. 143
  • Wu, X., Teuler, J., Cailliez, F., Clavaguéra, C., Salahub, D.R., De La Lande, A., Simulating electron dynamics in polarizable environments (2017) J. Chem. Theory Comput., 13, pp. 3985-4002
  • Murugan, N.A., Dasgupta, I., Chakraborty, A., Ganguli, N., Kongsted, J., Ågren, H., How crucial are finite temperature and solvent effects on structure and absorption spectra of Si10? (2012) J. Phys. Chem. C, 116, pp. 26618-26624
  • Li, X., Carravetta, V., Li, C., Monti, S., Rinkevicius, Z., Ågren, H., Optical properties of gold nanoclusters functionalized with a small organic compound: Modeling by an integrated quantum-classical approach (2016) J. Chem. Theory Comput., 12, pp. 3325-3339
  • Cuevasanta, E., Zeida, A., Carballal, S., Wedmann, R., Morzan, U.N., Trujillo, M., Radi, R., Alvarez, B., Insights into the mechanism of the reaction between hydrogen sulfide and peroxynitrite (2015) Free Radical Biol. Med., 80, pp. 93-100
  • Marcolongo, J., Morzan, U., Zeida, A., Scherlis, D., Olabe, J., Nitrosodisulfide [S2NO]- (perthionitrite) is a true intermediate during the "cross-talk" of nitrosyl and sulfide (2016) Phys. Chem. Chem. Phys., 18, pp. 30047-30052
  • Marcolongo, J.P., Zeida, A., Slep, L.D., Olabe, J.A., Thionitrous Acid/Thionitrite and Perthionitrite Intermediates in the "crosstalk" of NO and H2S (2017) Adv. Inorg. Chem., 70, pp. 277-309
  • Berendsen, H.J.C., Van Der Spoel, D.V., Van Drunen, R., A message-passing parallel molecular dynamics implementation (1995) Comput. Phys. Commun., 91, pp. 43-56
  • Jorgensen, W., Tirado-Rives, J., The OPLS force field for proteins. Energy minimizations for crystals of cyclic peptides and crambin (1988) J. Am. Chem. Soc., 110, pp. 1657-1666
  • Pederzoli, M., Sobek, L., Brabec, J., Kowalski, K., Cwiklik, L., Pittner, J., Fluorescence of PRODAN in water: A computational QM/MM MD study (2014) Chem. Phys. Lett., 597, pp. 57-62
  • Mennucci, B., Caricato, M., Ingrosso, F., Cappelli, C., Cammi, R., Tomasi, J., Scalmani, G., Frisch, M.J., How the environment controls absorption and fluorescence spectra of PRODAN: A quantum-mechanical study in homogeneous and heterogeneous media (2008) J. Phys. Chem. B, 112, pp. 414-423
  • Marini, A., Muñoz Losa, A., Biancardi, A., Mennucci, B., What is solvatochromism? (2010) J. Phys. Chem. B, 114, pp. 17128-17135
  • Barucha-Kraszewska, J., Kraszewski, S., Jurkiewicz, P., Ramseyer, C., Hof, M., Numerical studies of the membrane fluorescent dyes dynamics in ground and excited states (2010) Biochim. Biophys. Acta, Biomembr., 1798, pp. 1724-1734
  • Nitschke, W.K., Vequi-Suplicy, C.C., Coutinho, K., Stassen, H., Molecular dynamics investigations of PRODAN in a DLPC bilayer (2012) J. Phys. Chem. B, 116, pp. 2713-2721
  • Fukuda, R., Chidthong, R., Cammi, R., Ehara, M., Optical absorption and fluorescence of PRODAN in solution: Quantum chemical study based on the symmetry-adapted cluster-configuration interaction method (2012) Chem. Phys. Lett., 552, pp. 53-57
  • Loudet, A., Burgess, K., BODIPY dyes and their derivatives: Syntheses and spectroscopic properties (2007) Chem. Rev., 107, pp. 4891-4932
  • Erten-Ela, S., Yilmaz, M.D., Icli, B., Dede, Y., Icli, S., Akkaya, E.U., A Panchromatic boradiazaindacene (BODIPY) sensitizer for dye-sensitized solar cells (2008) Org. Lett., 10, pp. 3299-3302
  • Kamkaew, A., Lim, S.H., Lee, H.B., Kiew, L.V., Chung, L.Y., Burgess, K., BODIPY dyes in photodynamic therapy (2013) Chem. Soc. Rev., 42, pp. 77-88
  • Santra, M., Moon, H., Park, M.-H., Lee, T.-W., Kim, Y.K., Ahn, K.H., Dramatic substituent effects on the photoluminescence of boron complexes of 2-(benzothiazol-2-yl)phenols (2012) Chem. - Eur. J., 18, pp. 9886-9893
  • Gilbert, A.T.B., Besley, N.A., Gill, P.M.W., Self-consistent field calculations of excited states using the maximum overlap method (MOM) (2008) J. Phys. Chem. A, 112, pp. 13164-13171
  • Briggs, E.A., Besley, N.A., Robinson, D., QM/MM excited state molecular dynamics and fluorescence spectroscopy of BODIPY (2013) J. Phys. Chem. A, 117, pp. 2644-2650
  • Rudiuk, S., Franceschi-Messant, S., Chouini-Lalanne, N., Perez, E., Rico-Lattes, I., DNA photo-oxidative damage hazard in transfection complexes (2011) Photochem. Photobiol., 87, pp. 103-108
  • Cuquerella, M.C., Lhiaubet-Vallet, V., Cadet, J., Miranda, M.A., Benzophenone photosensitized DNA damage (2012) Acc. Chem. Res., 45, pp. 1558-1570
  • Thompson, M.A., Schenter, G.K., Excited states of the bacteriochlorophyll b dimer of rhodopseudomonas viridis: A QM/MM study of the photosynthetic reaction center that includes MM polarization (1995) J. Phys. Chem., 99, pp. 6374-6386
  • Hasegawa, J., Ohkawa, K., Nakatsuji, H., Excited states of the photosynthetic reaction center of rhodopseudomonas viridis: SACCI study (1998) J. Phys. Chem. B, 102, pp. 10410-10419
  • Reimers, J.R., Hutter, M.C., Hughes, J.M., Hush, N.S., Nature of the special-pair radical cation in bacterial photosynthesis (2000) Int. J. Quantum Chem., 80, pp. 1224-1243
  • Duñach, M., Marti, T., Khorana, H.G., Rothschild, K.J., UV-visible spectroscopy of bacteriorhodopsin mutants: Substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation (1990) Proc. Natl. Acad. Sci. U. S. A., 87, pp. 9873-9877
  • Imamoto, Y., Koshimizu, H., Mihara, K., Hisatomi, O., Mizukami, T., Tsujimoto, K., Kataoka, M., Tokunaga, F., Roles of amino acid residues near the chromophore of photoactive yellow protein (2001) Biochemistry, 40, pp. 4679-4685
  • Shimono, K., Ikeura, Y., Sudo, Y., Iwamoto, M., Kamo, N., Environment around the chromophore in pharaonis phoborhodopsin: Mutation analysis of the retinal binding site (2001) Biochim. Biophys. Acta, Biomembr., 1515, pp. 92-100
  • Houjou, H., Inoue, Y., Sakurai, M., Study of the opsin shift of bacteriorhodopsin: Insight from QM/MM calculations with electronic polarization effects of the protein environment (2001) J. Phys. Chem. B, 105, pp. 867-879
  • Sakurai, M., Sakata, K., Saito, S., Nakajima, S., Inoue, Y., Decisive role of electronic polarization of the protein environment in determining the absorption maximum of halorhodopsin (2003) J. Am. Chem. Soc., 125, pp. 3108-3112
  • Schreiber, M., Buß, V., Sugihara, M., Exploring the Opsin shift with ab initio methods: Geometry and counterion effects on the electronic spectrum of retinal (2003) J. Chem. Phys., 119, pp. 12045-12048
  • Fujimoto, K., Hasegawa, J.-Y., Hayashi, S., Kato, S., Nakatsuji, H., Mechanism of color tuning in retinal protein: SAC-CI and QM/MM study (2005) Chem. Phys. Lett., 414, pp. 239-242
  • Hoffmann, M., Wanko, M., Strodel, P., König, P.H., Frauenheim, T., Schulten, K., Thiel, W., Elstner, M., Color tuning in rhodopsins: The mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II (2006) J. Am. Chem. Soc., 128, pp. 10808-10818
  • Trabanino, R.J., Vaidehi, N., Goddard, W.A., Exploring the molecular mechanism for color distinction in humans (2006) J. Phys. Chem. B, 110, pp. 17230-17239
  • Coto, P.B., Strambi, A., Ferré, N., Olivucci, M., The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 17154-17159
  • Fujimoto, K., Hasegawa, J.-Y., Hayashi, S., Nakatsuji, H., On the color-tuning mechanism of human-blue visual pigment: SAC-CI and QM/MM study (2006) Chem. Phys. Lett., 432, pp. 252-256
  • Fujimoto, K., Hayashi, S., Hasegawa, J.-Y., Nakatsuji, H., Theoretical studies on the color-tuning mechanism in retinal proteins (2007) J. Chem. Theory Comput., 3, pp. 605-618
  • Bravaya, K., Bochenkova, A., Granovsky, A., Nemukhin, A., An opsin shift in rhodopsin: Retinal S0-S1 excitation in protein, in solution, and in the gas phase (2007) J. Am. Chem. Soc., 129, pp. 13035-13042
  • Altun, A., Yokoyama, S., Morokuma, K., Spectral tuning in visual pigments: An ONIOM(QM:MM) study on bovine rhodopsin and its mutants (2008) J. Phys. Chem. B, 112, pp. 6814-6827
  • Fujimoto, K., Hasegawa, J., Nakatsuji, H., Origin of color tuning in human red, green, and blue cone pigments: SAC-CI and QM/MM study (2008) Chem. Phys. Lett., 462, pp. 318-320
  • Wanko, M., Hoffmann, M., Frauenheim, T., Elstner, M., Effect of polarization on the opsin shift in rhodopsins. 1. A combined QM/QM/MM model for bacteriorhodopsin and pharaonis sensory rhodopsin II (2008) J. Phys. Chem. B, 112, pp. 11462-11467
  • Altun, A., Yokoyama, S., Morokuma, K., Mechanism of spectral tuning going from retinal in vacuo to bovine rhodopsin and its mutants: Multireference ab initio quantum mechanics/molecular mechanics studies (2008) J. Phys. Chem. B, 112, pp. 16883-16890
  • Altun, A., Yokoyama, S., Morokuma, K., Quantum mechanical/molecular mechanical studies on spectral tuning mechanisms of visual pigments and other photoactive proteins (2008) Photochem. Photobiol., 84, pp. 845-854
  • Altun, A., Yokoyama, S., Morokuma, K., Color tuning in short wavelength-sensitive human and mouse visual pigments: Ab initio quantum mechanics/molecular mechanics studies (2009) J. Phys. Chem. A, 113, pp. 11685-11692
  • Rajamani, R., Lin, Y., Gao, J., The opsin shift and mechanism of spectral tuning in rhodopsin (2011) J. Comput. Chem., 32, pp. 854-865
  • Sekharan, S., Morokuma, K., Why 11-cis-retinal? Why not 7-cis-, 9-cis-, or 13-cis-retinal in the eye? (2011) J. Am. Chem. Soc., 133, pp. 19052-19055
  • Melaccio, F., Ferre, N., Olivucci, M., Quantum chemical modeling of rhodopsin mutants displaying switchable colors (2012) Phys. Chem. Chem. Phys., 14, pp. 12485-12495
  • Frähmcke, J.S., Wanko, M., Elstner, M., Building a model of the blue cone pigment based on the wild type rhodopsin structure with QM/MM methods (2012) J. Phys. Chem. B, 116, pp. 3313-3321
  • Ryazantsev, M.N., Altun, A., Morokuma, K., Color tuning in rhodopsins: The origin of the spectral shift between the chloride-bound and anion-free forms of halorhodopsin (2012) J. Am. Chem. Soc., 134, pp. 5520-5523
  • Sekharan, S., Katayama, K., Kandori, H., Morokuma, K., Color vision: OH-Site rule for seeing red and green (2012) J. Am. Chem. Soc., 134, pp. 10706-10712
  • Valsson, O., Campomanes, P., Tavernelli, I., Rothlisberger, U., Filippi, C., Rhodopsin absorption from first principles: Bypassing common pitfalls (2013) J. Chem. Theory Comput., 9, pp. 2441-2454
  • Pal, R., Sekharan, S., Batista, V.S., Spectral tuning in halorhodopsin: The chloride pump photoreceptor (2013) J. Am. Chem. Soc., 135, pp. 9624-9627
  • Campomanes, P., Neri, M., Horta, B.A.C., Röhrig, U.F., Vanni, S., Tavernelli, I., Rothlisberger, U., Origin of the spectral shifts among the early intermediates of the rhodopsin photocycle (2014) J. Am. Chem. Soc., 136, pp. 3842-3851
  • Dokukina, I., Weingart, O., Spectral properties and isomerisation path of retinal in C1C2 channelrhodopsin (2015) Phys. Chem. Chem. Phys., 17, pp. 25142-25150
  • Xie, P., Zhou, P., Alsaedi, A., Zhang, Y., PH-dependent absorption spectra of rhodopsin mutant E113Q: On the role of counterions and protein (2017) Spectrochim. Acta, Part A, 174, pp. 25-31
  • Prendergast, F.G., Mann, K.G., Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskalea (1978) Biochemistry, 17, pp. 3448-3453
  • Ormö, M., Cubitt, A.B., Kallio, K., Gross, L.A., Tsien, R.Y., Remington, S.J., Crystal structure of the aequorea victoria green fluorescent protein (1996) Science, 273, pp. 1392-1395
  • Tsien, R.Y., The green fluorescent protein (1998) Annu. Rev. Biochem., 67, pp. 509-544
  • Acharya, A., Bogdanov, A.M., Grigorenko, B.L., Bravaya, K.B., Nemukhin, A.V., Lukyanov, K.A., Krylov, A.I., Photoinduced chemistry in fluorescent proteins: Curse or blessing? (2017) Chem. Rev., 117, pp. 758-795
  • Marques, M.A.L., López, X., Varsano, D., Castro, A., Rubio, A., Time-dependent density-functional approach for biological chromophores: The case of the green fluorescent protein (2003) Phys. Rev. Lett., 90
  • Creemers, T.M.H., Lock, A.J., Subramaniam, V., Jovin, T.M., Völker, S., Photophysics and optical switching in green fluorescent protein mutants (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 2974-2978
  • Patnaik, S.S., Trohalaki, S., Naik, R.R., Stone, M.O., Pachter, R., Computational study of the absorption spectra of green fluorescent protein mutants (2007) Biopolymers, 85, pp. 253-263
  • Hasegawa, J., Ise, T., Fujimoto, K.J., Kikuchi, A., Fukumura, E., Miyawaki, A., Shiro, Y., Excited states of fluorescent proteins, mKO and DsRed: Chromophore-protein electrostatic interaction behind the color variations (2010) J. Phys. Chem. B, 114, pp. 2971-2979
  • Filippi, C., Buda, F., Guidoni, L., Sinicropi, A., Bathochromic shift in green fluorescent protein: A Puzzle for QM/MM approaches (2012) J. Chem. Theory Comput., 8, pp. 112-124
  • Wachter, R.M., King, B.A., Heim, R., Kallio, K., Tsien, R.Y., Boxer, S.G., Remington, S.J., Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein (1997) Biochemistry, 36, pp. 9759-9765
  • Bublitz, G., King, B.A., Boxer, S.G., Electronic structure of the chromophore in green fluorescent protein (GFP) (1998) J. Am. Chem. Soc., 120, pp. 9370-9371
  • Grigorenko, B.L., Polyakov, I.V., Savitsky, A.P., Nemukhin, A.V., Unusual emitting states of the Kindling fluorescent protein: Appearance of the cationic chromophore in the GFP family (2013) J. Phys. Chem. B, 117, pp. 7228-7234
  • Armengol, P., Gelabert, R., Moreno, M., Lluch, J.M., Theoretical computer-aided mutagenic study on the triple green fluorescent protein mutant S65T/H148D/Y145F (2015) ChemPhysChem, 16, pp. 2134-2139
  • Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K., Tsien, R.Y., The structure of the chromophore within DsRed, a red fluorescent protein from coral (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 11990-11995
  • Sun, Q., Li, Z., Lan, Z., Pfisterer, C., Doerr, M., Fischer, S., Smith, S.C., Thiel, W., Isomerization mechanism of the HcRed fluorescent protein chromophore (2012) Phys. Chem. Chem. Phys., 14, pp. 11413-11424
  • Sánchez-García, E., Doerr, M., Hsiao, Y., Thiel, W., QM/MM study of the monomeric red fluorescent protein DsRed.M1 (2009) J. Phys. Chem. B, 113, pp. 16622-16631
  • Sánchez-García, E., Doerr, M., Thiel, W., QM/MM study of the absorption spectra of DsRed.M1 chromophores (2010) J. Comput. Chem., 31, pp. 1603-1612
  • Bravaya, K.B., Subach, O.M., Korovina, N., Verkhusha, V.V., Krylov, A.I., Insight into the common mechanism of the chromophore formation in the red fluorescent proteins: The elusive blue intermediate revealed (2012) J. Am. Chem. Soc., 134, pp. 2807-2814
  • Armengol, P., Gelabert, R., Moreno, M., Lluch, J.M., Chromophore interactions leading to different absorption spectra in mNeptune1 and mCardinal red fluorescent proteins (2016) Phys. Chem. Chem. Phys., 18, pp. 16964-16976
  • Chen, F., Zeng, Q., Zhuang, W., Liang, W., Characterizing the structures, spectra, and energy landscapes involved in the excited-state proton transfer process of red fluorescent protein LSSmKate1 (2016) J. Phys. Chem. B, 120, pp. 9833-9842
  • Yagi, K., Yamano, T., (1980) Flavins and Flavoproteins: Proceedings of the 6th International Symposium, , Japan Scientific Societies Press: Tokyo and University Park Press: Baltimore, MD
  • Cannuccia, E., Pulci, O., Sole, R.D., Cascella, M., Optical properties of flavin mononucleotide: A QM/MM study of protein environment effects (2011) Chem. Phys., 389, pp. 35-38
  • Khrenova, M.G., Nemukhin, A.V., Domratcheva, T., Theoretical characterization of the flavin-based fluorescent protein iLOV and its Q489K mutant (2015) J. Phys. Chem. B, 119, pp. 5176-5183
  • Zanetti-Polzi, L., Aschi, M., Daidone, I., Amadei, A., Theoretical modeling of the absorption spectrum of aqueous riboflavin (2017) Chem. Phys. Lett., 669, pp. 119-124
  • He, Z., Martin, C.H., Birge, R., Freed, K.F., Theoretical studies on excited states of a phenolate anion in the environment of photoactive yellow protein (2000) J. Phys. Chem. A, 104, pp. 2939-2952
  • Gromov, E.V., Burghardt, I., Köppel, H., Cederbaum, L.S., Electronic structure of the PYP chromophore in its native protein environment (2007) J. Am. Chem. Soc., 129, pp. 6798-6806
  • Wei, L., Wang, H., Chen, X., Fang, W., Wang, H., A comprehensive study of isomerization and protonation reactions in the photocycle of the photoactive yellow protein (2014) Phys. Chem. Chem. Phys., 16, pp. 25263-25272
  • Gamiz-Hernandez, A.P., Kaila, V.R.I., Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein (2016) Phys. Chem. Chem. Phys., 18, pp. 2802-2809
  • Cascella, M., Cuendet, M.A., Tavernelli, I., Rothlisberger, U., Optical spectra of Cu(II)-azurin by hybrid TDDFT-molecular dynamics simulations (2007) J. Phys. Chem. B, 111, pp. 10248-10252
  • Penfield, K.W., Gewirth, A.A., Solomon, E.I., Electronic structure and bonding of the blue copper site in plastocyanin (1985) J. Am. Chem. Soc., 107, pp. 4519-4529
  • Cascella, M., Magistrato, A., Tavernelli, I., Carloni, P., Rothlisberger, U., Role of protein frame and solvent for the redox properties of azurin from Pseudomonas aeruginosa (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 19641-19646
  • (1978) The Porphyrins, III. , Dolphin, D., Ed.; Academic Press: Cambridge, MA
  • Rimington, C., Spectral-absorption coefficients of some porphyrins in the Soret-band region (1960) Biochem. J., 75, pp. 620-623
  • Momenteau, M., Reed, C.A., Synthetic heme dioxygen complexes (1994) Chem. Rev., 94, pp. 659-698
  • Loew, G.H., Harris, D.L., Role of the Heme active site and protein environment in structure, spectra, and function of the cytochrome P450s (2000) Chem. Rev., 100, pp. 407-419
  • Li, Z., Mukamel, S., First-principles simulation of amide and aromatic side chain ultraviolet spectroscopy of a cyclic dipeptide (2007) J. Phys. Chem. A, 111, pp. 11579-11583
  • Rodriguez, J.J., Mukamel, S., Dissecting two-dimensional ultraviolet spectra of amyloid fibrils into beta-strand and turn contributions (2012) J. Phys. Chem. B, 116, pp. 8830-8835
  • Lam, A.R., Jiang, J., Rojas, A., Scheraga, H., Mukamel, S., Monitoring the mechanism of fiber assembly of AB peptides in Alzheimer's disease (AD) by two-dimensional ultraviolet (2DUV) spectroscopy (2012) Biophys. J., 102, p. 733a
  • Lam, A., Jiang, J., Mukamel, S., Distinguishing amyloid fibril structures in Alzheimers disease (AD) by two-dimensional ultraviolet (2DUV) spectroscopy (2011) Biochemistry, 50, pp. 9809-9816
  • Ren, H., Jiang, J., Mukamel, S., Deep UV resonance Raman spectroscopy of β-sheet amyloid fibrils: A QM/MM simulation (2011) J. Phys. Chem. B, 115, pp. 13955-13962
  • Jiang, J., Mukamel, S., Two-dimensional near-ultraviolet spectroscopy of aromatic residues in amyloid fibrils: A first principles study (2011) Phys. Chem. Chem. Phys., 13, pp. 2394-2400
  • Jiang, J., Mukamel, S., Probing amyloid fibril growth by two-dimensional near-ultraviolet spectroscopy (2011) J. Phys. Chem. B, 115, pp. 6321-6328
  • Jiang, J., Mukamel, S., Two-dimensional ultraviolet (2DUV) spectroscopic tools for identifying fibrillation propensity of protein residue sequences (2010) Angew. Chem., Int. Ed., 49, pp. 9666-9669
  • Jiang, J., Abramavicius, D., Falvo, C., Bulheller, B.M., Hirst, J.D., Mukamel, S., Simulation of two-dimensional ultraviolet spectroscopy of amyloid fibrils (2010) J. Phys. Chem. B, 114, pp. 12150-12156
  • Jiang, J., Abramavicius, D., Bulheller, B.M., Hirst, J.D., Mukamel, S., Ultraviolet spectroscopy of protein backbone transitions in aqueous solution: Combined QM and MM simulations (2010) J. Phys. Chem. B, 114, pp. 8270-8277
  • Abramavicius, D., Jiang, J., Bulheller, B.M., Hirst, J.D., Mukamel, S., Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone (2010) J. Am. Chem. Soc., 132, pp. 7769-7775
  • Tseng, C.-H., Sándor, P., Kotur, M., Weinacht, T.C., Matsika, S., Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV (2012) J. Phys. Chem. A, 116, pp. 2654-2661
  • West, B.A., Womick, J.M., Moran, A.M., Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies (2011) J. Phys. Chem. A, 115, pp. 8630-8637
  • Womick, J.M., Moran, A.M., Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes (2011) J. Phys. Chem. B, 115, pp. 1347-1356
  • Brixner, T., Stenger, J., Vaswani, H.M., Cho, M., Blankenship, R.E., Fleming, G.R., Two-dimensional spectroscopy of electronic couplings in photosynthesis (2005) Nature, 434, pp. 625-628
  • Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M., Brumer, P., Scholes, G.D., Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature (2010) Nature, 463, pp. 644-647
  • Panitchayangkoon, G., Hayes, D., Fransted, K.A., Caram, J.R., Harel, E., Wen, J., Blankenship, R.E., Engel, G.S., Long-lived quantum coherence in photosynthetic complexes at physiological temperature (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 12766-12770
  • Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.-K., Mančal, T., Cheng, Y.-C., Blankenship, R.E., Fleming, G.R., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems (2007) Nature, 446, pp. 782-786
  • Ginsberg, N.S., Cheng, Y.-C., Fleming, G.R., Two-dimensional electronic spectroscopy of molecular aggregates (2009) Acc. Chem. Res., 42, pp. 1352-1363
  • Mukamel, S., (1995) Principles of Nonlinear Optical Spectroscopy, , Oxford University Press: New York
  • Zhuang, W., Hayashi, T., Mukamel, S., Coherent multidimensional vibrational spectroscopy of biomolecules: Concepts, simulations, and challenges (2009) Angew. Chem., Int. Ed., 48, pp. 3750-3781
  • Abramavicius, D., Palmieri, B., Voronine, D.V., Sanda, F., Mukamel, S., Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; Quasiparticle versus supermolecule perspectives (2009) Chem. Rev., 109, pp. 2350-2408
  • Garavelli, M., Bernardi, F., Cembran, A., Computation of photochemical reaction mechanisms in organic chemistry (2005) Theor. Comput. Chem., 16, pp. 191-223
  • Rivalta, I., Nenov, A., Cerullo, G., Mukamel, S., Garavelli, M., Ab initio simulations of two-dimensional electronic spectra: The SOS//QM/MM approach (2014) Int. J. Quantum Chem., 114, pp. 85-93
  • Fortenberry, R.C., Huang, X., Yachmenev, A., Thiel, W., Lee, T.J., On the use of quartic force fields in variational calculations (2013) Chem. Phys. Lett., 574, pp. 1-12
  • Alonso De Armiño, D.J., Bustamante, C.M., A quartic force field coordinate substitution scheme using hyperbolic sine coordinates (2017) Int. J. Quantum Chem., 117, p. e25390
  • Strobusch, D., Scheurer, C., Adaptive sparse grid expansions of the vibrational Hamiltonian (2014) J. Chem. Phys., 140
  • Hermes, M.R., Hirata, S., Stochastic algorithm for size-extensive vibrational self-consistent field methods on fully anharmonic potential energy surfaces (2014) J. Chem. Phys., 141
  • Neff, M., Rauhut, G., Toward large scale vibrational configuration interaction calculations (2009) J. Chem. Phys., 131
  • Hermes, M.R., Hirata, S., Diagrammatic theories of anharmonic molecular vibrations (2015) Int. Rev. Phys. Chem., 34, pp. 71-97
  • Thomsen, B., Yagi, K., Christiansen, O., Optimized coordinates in vibrational coupled cluster calculations (2014) J. Chem. Phys., 140
  • McQuarrie, D.A., (1976) Statistical Mechanics, p. 641. , 1 st ed.; Harper & Row: London
  • Thomas, M., Brehm, M., Fligg, R., Vöhringer, P., Kirchner, B., Computing vibrational spectra from ab initio molecular dynamics (2013) Phys. Chem. Chem. Phys., 15, pp. 6608-6622
  • Futrelle, R., McGinty, D., Calculation of spectra and correlation functions from molecular dynamics data using the fast Fourier transform (1971) Chem. Phys. Lett., 12, pp. 285-287
  • Morril, T., (1981) Spectrometric Identification of Organic Compounds, , 4 th ed.; John Wiley and Sons: New York
  • Martínez, M., Gaigeot, M.-P., Borgis, D., Vuilleumier, R., Extracting effective normal modes from equilibrium dynamics at finite temperature (2006) J. Chem. Phys., 125
  • Walewski, L., Bala, P., Elstner, M., Frauenheim, T., Lesyng, B., Fast QM/MM method and its application to molecular systems (2004) Chem. Phys. Lett., 397, pp. 451-458
  • Schwörer, M., Wichmann, C., Tavan, P., A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water (2016) J. Chem. Phys., 144
  • Tirler, A.O., Hofer, T.S., A Comparative study of [CaEDTA]-2 and [MgEDTA]-2: Structural and dynamical insights from quantum mechanical charge field molecular dynamics (2015) J. Phys. Chem. B, 119, pp. 8613-8622
  • Welke, K., Watanabe, H.C., Wolter, T., Gaus, M., Elstner, M., QM/MM simulations of vibrational spectra of bacteriorhodopsin and channelrhodopsin-2 (2013) Phys. Chem. Chem. Phys., 15, pp. 6651-6659
  • Hofer, T.S., Pribil, A.B., Randolf, B.R., Rode, B.M., Structure and dynamics of solvated Sn(II) in aqueous solution: An ab initio QM/MM MD approach (2005) J. Am. Chem. Soc., 127, pp. 14231-14238
  • Kritayakornupong, C., Plankensteiner, K., Rode, B.M., Structure and dynamics of the Cr(III) ion in aqueous solution: Ab initio QM/MM molecular dynamics simulation (2004) J. Comput. Chem., 25, pp. 1576-1583
  • Kritayakornupong, C., Plankensteiner, K., Rode, B.M., Structure and dynamics of the Cd2+ ion in aqueous solution: Ab initio QM/MM molecular dynamics simulation (2003) J. Phys. Chem. A, 107, pp. 10330-10334
  • Bochenkova, A., Firsov, D., Nemukhin, A., Hybrid DIM-based QM/MM approach applied to vibrational spectra and trapping site structures of HArF in solid argon (2005) Chem. Phys. Lett., 405, pp. 165-171
  • Cui, Q., Karplus, M., Molecular properties from combined QM/MM methods. I. Analytical second derivative and vibrational calculations (2000) J. Chem. Phys., 112, pp. 1133-1149
  • Rovira, C., Schulze, B., Eichinger, M., Evanseck, J.D., Parrinello, M., Influence of the heme pocket conformation on the structure and vibrations of the Fe-CO bond in myoglobin: A QM/MM density functional study (2001) Biophys. J., 81, pp. 435-445
  • Chaban, G.M., Gerber, R.B., Anharmonic vibrational spectroscopy of the glycine-water complex: Calculations for ab initio, empirical, and hybrid quantum mechanics/molecular mechanics potentials (2001) J. Chem. Phys., 115, pp. 1340-1348
  • Inada, Y., Loeffler, H.H., Rode, B.M., Librational, vibrational, and exchange motions of water molecules in aqueous Ni(II) solution: Classical and QM/MM molecular dynamics simulations (2002) Chem. Phys. Lett., 358, pp. 449-458
  • Hayashi, S., Ohmine, I., Proton transfer in bacteriorhodopsin: Structure, excitation, IR spectra, and potential energy surface analyses by an ab initio QM/MM method (2000) J. Phys. Chem. B, 104, pp. 10678-10691
  • Nonella, M., Boullais, C., Mioskowski, C., Nabedryk, E., Breton, J., Vibrational spectrum and torsional potential of 2-Methoxy-3-methyl-1,4-benzoquinone (1999) J. Phys. Chem. B, 103, pp. 6363-6370
  • Klähn, M., Schlitter, J., Gerwert, K., Theoretical IR spectroscopy based on QM/MM calculations provides changes in charge distribution, bond lengths, and bond angles of the GTP ligand induced by the Ras-protein (2005) Biophys. J., 88, pp. 3829-3844
  • González Lebrero, M.C., Bikiel, D.E., Elola, M.D., Estrin, D.A., Roitberg, A.E., Solvent-induced symmetry breaking of nitrate ion in aqueous clusters: A quantum-classical simulation study (2002) J. Chem. Phys., 117, pp. 2718-2725
  • Tsai, J.-H.M., Harrison, J.G., Martin, J.C., Hamilton, T.P., Van Der Woerd, M., Jablonsky, M.J., Beckman, J.S., Role of conformation of peroxynitrite anion (ONOO-) with its stability and toxicity (1994) J. Am. Chem. Soc., 116, pp. 4115-4116
  • Lo, W.-J., Lee, Y., Tsai, J.M., Tsai, H., Hamilton, T.P., Harrison, J.G., Beckman, J.S., Infrared absorption of cis and transalkalimetal peroxynitrites (MOONO, M = Li, Na, and K) in solid argon (1995) J. Chem. Phys., 103, pp. 4026-4034
  • Bikiel, D.E., Di Salvo, F., González Lebrero, M.C., Doctorovich, F., Estrin, D.A., Solvation and structure of LiAlH4 in ethereal solvents (2005) Inorg. Chem., 44, pp. 5286-5292
  • Guardia, C.M., González Lebrero, M.C., Bari, S.E., Estrin, D.A., QMMM investigation of the reaction products between nitroxyl and O2 in aqueous solution (2008) Chem. Phys. Lett., 463, pp. 112-116
  • Tanzi, L., Ramondo, F., Guidoni, L., Vibrational spectra of water solutions of azoles from QM/MM calculations: Effects of solvation (2012) J. Phys. Chem. A, 116, pp. 10160-10171
  • Ghysels, A., Woodcock, H.L., Larkin, J.D., Miller, B.T., Shao, Y., Kong, J., Neck, D.V., Brooks, B.R., Efficient calculation of QM/MM frequencies with the mobile block Hessian (2011) J. Chem. Theory Comput., 7, pp. 496-514
  • Ghysels, A., Van Neck, D., Van Speybroeck, V., Verstraelen, T., Waroquier, M., Vibrational modes in partially optimized molecular systems (2007) J. Chem. Phys., 126
  • Ghysels, A., Van Neck, D., Waroquier, M., Cartesian formulation of the Mobile Block Hessian approach to vibrational analysis in partially optimized systems (2007) J. Chem. Phys., 127
  • Rippers, Y., Horch, M., Hildebrandt, P., Zebger, I., Mroginski, M.A., Revealing the absolute configuration of the CO and CN ligands at the active site of a [NiFe] hydrogenase (2012) ChemPhysChem, 13, pp. 3852-3856
  • Lee, M.W., Meuwly, M., Molecular dynamics simulation of nitric Oxide in myoglobin (2012) J. Phys. Chem. B, 116, pp. 4154-4162
  • Falvo, C., Daniault, L., Vieille, T., Kemlin, V., Lambry, J.-C., Meier, C., Vos, M.H., Joffre, M., Ultrafast dynamics of carboxy-hemoglobin: Two-dimensional infrared spectroscopy experiments and simulations (2015) J. Phys. Chem. Lett., 6, pp. 2216-2222
  • Yan, Y.-A., Kuhn, O., Geometric correlations and infrared spectrum of adenine-uracil hydrogen bonds in CDCl3 solution (2010) Phys. Chem. Chem. Phys., 12, pp. 15695-15703
  • Jeon, J., Yang, S., Choi, J.-H., Cho, M., Computational vibrational spectroscopy of peptides and proteins in one and two dimensions (2009) Acc. Chem. Res., 42, pp. 1280-1289
  • Watanabe, H.C., Banno, M., Sakurai, M., An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: Incorporation of the quantum effect between solute and solvent (2016) Phys. Chem. Chem. Phys., 18, pp. 7318-7333
  • Placzek, G., Intensität und polarisation der Ramanschen streustrahlung mehratomiger moleküle (1931) Eur. Phys. J. A, 70, pp. 84-103
  • Schatz, G.C., Ratner, M.A., (2002) Quantum Mechanics in Chemistry, , Dover Publications: Mineola, NY
  • Long, D.A., (2002) The Raman Effect, , John Wiley & Sons: Chichester, U.K
  • Neugebauer, J., Reiher, M., Kind, C., Hess, B.A., Quantum chemical calculation of vibrational spectra of large molecules-Raman and IR spectra for Buckminsterfullerene (2002) J. Comput. Chem., 23, pp. 895-910
  • Kramers, H.A., Heisenberg, W., Über die Streuung von Strahlung durch Atome (1925) Z. Phys., 31, pp. 681-708
  • Dirac, P.A.M., The quantum theory of dispersion (1927) Proc. R. Soc. London, Ser. A, 114, pp. 710-728
  • Behringer, J., Zur theorie des resonanz-Raman-effektes (1958) Z. Elektrochem., Ber. Bunsen-Ges. Phys. Chem., 62, pp. 906-914
  • Atkins, P.W., Friedman, R.S., (2011) Molecular Quantum Mechanics, , Oxford University Press: Oxford, U.K
  • Komornicki, A., McIver, J.W., An efficient ab initio method for computing infrared and Raman intensities: Application to ethylene (1979) J. Chem. Phys., 70, p. 2014
  • Albrecht, A.C., On the theory of Raman intensities (1961) J. Chem. Phys., 34, p. 1476
  • Tang, J., Albrecht, A.C., Studies in Raman intensity theory (1968) J. Chem. Phys., 49, p. 1144
  • Frisch, M.J., Yamaguchi, Y., Gaw, J.F., Schaefer, H.F., Binkley, J.S., Analytic Raman intensities from molecular electronic wave functions (1986) J. Chem. Phys., 84, pp. 531-532
  • Bacskay, G.B., Saebø, S., Taylor, P.R., On the calculation of dipole moment and polarizability derivatives by the analytical energy gradient method: Application to the formaldehyde molecule (1984) Chem. Phys., 90, pp. 215-224
  • Peticolas, W.L., Rush, T., Ab initio calculations of the ultraviolet resonance Raman spectra of uracil (1995) J. Comput. Chem., 16, pp. 1261-1270
  • Rush, T.I., Peticolas, W.L., Ab initio transform calculation of resonance Raman spectra of uracil, 1-methyluracil, and 5-methyluracil (1995) J. Phys. Chem., 99, pp. 14647-14658
  • Mroginski, M.-A., Kneip, C., Hildebrandt, P., Mark, F., Excited state geometry calculations and the resonance Raman spectrum of hexamethylpyrromethene (2003) J. Mol. Struct., 661-662, pp. 611-624
  • Neugebauer, J., Hess, B.A., Resonance Raman spectra of uracil based on Kramers-Kronig relations using time-dependent density functional calculations and multireference perturbation theory (2004) J. Chem. Phys., 120, pp. 11564-11577
  • Guthmuller, J., Champagne, B., Time dependent density functional theory investigation of the resonance Raman properties of the julolidinemalononitrile push-pull chromophore in various solvents (2007) J. Chem. Phys., 127
  • Heller, E.J., Sundberg, R., Tannor, D., Simple aspects of Raman scattering (1982) J. Phys. Chem., 86, pp. 1822-1833
  • Lee, S., Heller, E.J., Exact time-dependent wave packet propagation: Application to the photodissociation of methyl iodide (1982) J. Chem. Phys., 76, pp. 3035-3044
  • Heller, E.J., The semiclassical way to molecular spectroscopy (1981) Acc. Chem. Res., 14, pp. 368-375
  • Lee, S.-Y., Heller, E.J., Time-dependent theory of Raman scattering (1979) J. Chem. Phys., 71, p. 4777
  • Guthmuller, J., Comparison of simplified sum-over-state expressions to calculate resonance Raman intensities including Franck-Condon and Herzberg-Teller effects (2016) J. Chem. Phys., 144
  • Neugebauer, J., Baerends, E.J., Efremov, E.V., Ariese, F., Gooijer, C., Combined theoretical and experimental deep-UV resonance Raman studies of substituted pyrenes (2005) J. Phys. Chem. A, 109, pp. 2100-2106
  • Thomas, M., Latorre, F., Marquetand, P., Resonance Raman spectra of ortho-nitrophenol calculated by real-time time-dependent density functional theory (2013) J. Chem. Phys., 138
  • Jensen, L., Zhao, L.L., Autschbach, J., Schatz, G.C., Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives (2005) J. Chem. Phys., 123
  • Jensen, L., Autschbach, J., Schatz, G.C., Finite lifetime effects on the polarizability within time-dependent density-functional theory (2005) J. Chem. Phys., 122
  • Kane, K.A., Jensen, L., Calculation of absolute resonance Raman intensities: Vibronic theory vs short-time approximation (2010) J. Phys. Chem. C, 114, pp. 5540-5546
  • Baiardi, A., Bloino, J., Barone, V., A general time-dependent route to resonance-Raman spectroscopy including Franck-Condon, Herzberg-Teller, and Duschinsky effects (2014) J. Chem. Phys., 141
  • Baiardi, A., Bloino, J., Barone, V., Accurate Simulation of resonance-Raman spectra of flexible molecules: An internal coordinates approach (2015) J. Chem. Theory Comput., 11, pp. 3267-3280
  • Baiardi, A., Bloino, J., Barone, V., General formulation of vibronic spectroscopy in internal coordinates (2016) J. Chem. Phys., 144
  • Norman, P., Bishop, D.M., Jensen, H.J.A., Oddershede, J., Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations (2001) J. Chem. Phys., 115, pp. 10323-10334
  • Norman, P., Bishop, D.M., Jensen, H.J.A., Oddershede, J., Nonlinear response theory with relaxation: The first-order hyperpolarizability (2005) J. Chem. Phys., 123
  • Mroginski, M.A., Mark, F., Thiel, W., Hildebrandt, P., Quantum mechanics/molecular mechanics calculation of the Raman spectra of the phycocyanobilin chromophore in alpha-C-phycocyanin (2007) Biophys. J., 93, pp. 1885-1894
  • Mroginski, M.A., Murgida, D.H., Hildebrandt, P., The chromophore structural changes during the photocycle of phytochrome: A combined resonance Raman and quantum chemical approach (2007) Acc. Chem. Res., 40, pp. 258-266
  • Mroginski, M.A., Von Stetten, D., Escobar, F.V., Strauss, H.M., Kaminski, S., Scheerer, P., Günther, M., Bongards, C., Chromophore structure of cyanobacterial phytochrome Cph1 in the Pr state: Reconciling structural and spectroscopic data by QM/MM calculations (2009) Biophys. J., 96, pp. 4153-4163
  • Mroginski, M.A., Kaminski, S., Hildebrandt, P., Raman spectra of the phycoviolobilin cofactor in phycoerythrocyanin calculated by QM/MM methods (2010) ChemPhysChem, 11, pp. 1265-1274
  • Horch, M., Schoknecht, J., Mroginski, M.A., Lenz, O., Hildebrandt, P., Zebger, I., Resonance Raman spectroscopy on [NiFe] hydrogenase provides structural insights into catalytic intermediates and reactions (2014) J. Am. Chem. Soc., 136, pp. 9870-9873
  • Siebert, E., Rippers, Y., Frielingsdorf, S., Fritsch, J., Schmidt, A., Kalms, J., Katz, S., Paasche, L., Resonance Raman spectroscopic analysis of the [NiFe] active site and the proximal [4Fe-3S] cluster of an O2-tolerant membrane-bound hydrogenase in the crystalline state (2015) J. Phys. Chem. B, 119, pp. 13785-13796
  • Sezer, M., Woelke, A.L., Knapp, E.W., Schlesinger, R., Mroginski, M.A., Weidinger, I.M., Redox induced protonation of heme propionates in cytochrome c oxidase: Insights from surface enhanced resonance Raman spectroscopy and QM/MM calculations (2017) Biochim. Biophys. Acta, Bioenerg., 1858, pp. 103-108
  • Kubota, K., Shingae, T., Foster, N.D., Kumauchi, M., Hoff, W.D., Unno, M., Active site structure of photoactive yellow protein with a locked chromophore analogue revealed by near-infrared Raman optical activity (2013) J. Phys. Chem. Lett., 4, pp. 3031-3038
  • Malolepsza, E., Witek, H.A., Morokuma, K., Accurate vibrational frequencies using the self-consistent-charge density-functional tight-binding method (2005) Chem. Phys. Lett., 412, pp. 237-243
  • Frenkel, J., On the transformation of light into heat (1931) Phys. Rev., 37, pp. 1276-1294
  • Abramavicius, D., Palmieri, B., Voronine, D.V., Sanda, F., Mukamel, S., Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; Quasiparticle versus supermolecule perspectives (2009) Chem. Rev., 109, pp. 2350-2408
  • Fleischmann, M., Hendra, P.J., McQuillan, A.J., Raman spectra of pyridine adsorbed at a silver electrode (1974) Chem. Phys. Lett., 26, pp. 163-166
  • Jeanmaire, D.L., Van Duyne, R.P., Surface raman spectroelectrochemistryPart I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode (1977) J. Electroanal. Chem. Interfacial Electrochem., 84, pp. 1-20
  • Nie, S., Emory, S.R., Probing single molecules and single nanoparticles by surface enhanced raman scattering (1997) Science, 275, pp. 1102-1106
  • Kneipp, K., Wang, Y., Kneipp, H., Itzkan, I., Dasari, R., Feld, M., Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering (1996) Phys. Rev. Lett., 76, pp. 2444-2447
  • Kneipp, K., Wang, Y., Kneipp, H., Perelman, L.T., Itzkan, I., Dasari, R.R., Feld, M.S., Single molecule detection using surface-enhanced Raman scattering (SERS) (1997) Phys. Rev. Lett., 78, pp. 1667-1670
  • Cialla, D., März, A., Böhme, R., Theil, F., Weber, K., Schmitt, M., Popp, J., Surface-enhanced Raman spectroscopy (SERS) Progress and trends (2012) Anal. Bioanal. Chem., 403, pp. 27-54
  • Zrimsek, A.B., Chiang, N., Mattei, M., Zaleski, S., McAnally, M.O., Chapman, C.T., Henry, A.-I., Van Duyne, R.P., Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy (2017) Chem. Rev., 117, pp. 7583-7613
  • Pozzi, F., Zaleski, S., Casadio, F., Leona, M., Lombardi, J., Van Duyne, R., (2016) Nanoscience and Cultural Heritage, pp. 161-204. , Atlantis Press: Paris
  • Henry, A.I., Sharma, B., Cardinal, M.F., Kurouski, D., Van Duyne, R.P., Surface-enhanced Raman spectroscopy biosensing: In vivo diagnostics and multimodal imaging (2016) Anal. Chem., 88, pp. 6638-6647
  • Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals (1978) J. Chem. Phys., 69, p. 4159
  • Moskovits, M., Enhanced Raman scattering by molecules adsorbed on electrodes-a theoretical model (1979) Solid State Commun., 32, pp. 59-62
  • Gersten, J., Nitzan, A., Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces (1980) J. Chem. Phys., 73, pp. 3023-3037
  • Aravind, P., Metiu, H., The enhancement of raman and fluorescent intensity by small surface roughness. Changes in dipole emission (1980) Chem. Phys. Lett., 74, pp. 301-305
  • Kerker, M., Wang, D.-S., Chew, H., Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles (1980) Appl. Opt., 19, p. 3373
  • Moskovits, M., Surface-enhanced spectroscopy (1985) Rev. Mod. Phys., 57, pp. 783-826
  • Shalaev, V.M., Stockman, M.I., Fractals: Optical susceptibility and giant raman scattering (1988) Z. Phys. D: At., Mol. Clusters, 10, pp. 71-79
  • Kottmann, J., Martin, O., Plasmon resonant coupling in metallic nanowires (2001) Opt. Express, 8, pp. 655-663
  • Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment (2003) J. Phys. Chem. B, 107, pp. 668-677
  • Prodan, E., Radloff, C., Halas, N.J., Norlander, P., A hybridization model for the plasmon response of complex nanostructures (2003) Science, 302, pp. 419-422
  • Ball, P., Martin Fleischmann (1927-2012) (2012) Nature, 489, p. 34
  • Moskovits, M., Persistent misconceptions regarding SERS (2013) Phys. Chem. Chem. Phys., 15, p. 5301
  • Otto, A., Billmann, J., Eickmans, J., Ertürk, U., Pettenkofer, C., The "adatom model" of SERS (Surface Enhanced Raman Scattering): The present status (1984) Surf. Sci., 138, pp. 319-338
  • Adrian, F.J., Charge transfer effects in surface-enhanced Raman scattering (1982) J. Chem. Phys., 77, p. 5302
  • Michaels, A.M., Nirmal, M., Brus, L.E., Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals (1999) J. Am. Chem. Soc., 121, pp. 9932-9939
  • Tripp, R.A., Dluhy, R.A., Zhao, Y., Novel nanostructures for SERS biosensing (2008) Nano Today, 3, pp. 31-37
  • Hu, Z., Chulhai, D.V., Jensen, L., Simulating surface-enhanced hyper-Raman scattering using atomistic electrodynamics-quantum mechanical models (2016) J. Chem. Theory Comput., 12, pp. 5968-5978
  • Camden, J.P., Dieringer, J.A., Wang, Y., Masiello, D.J., Marks, L.D., Schatz, G.C., Van Duyne, R.P., Probing the structure of single-molecule surface-enhanced Raman scattering hot spots (2008) J. Am. Chem. Soc., 130, pp. 12616-12617
  • Galarreta, B.C., Harté, E., Marquestaut, N., Norton, P.R., Lagugné-Labarthet, F., Plasmonic properties of Fischer's patterns: Polarization effects (2010) Phys. Chem. Chem. Phys., 12, pp. 6810-6816
  • Mie, G., Beiträge zur optik trüber medien, speziell kolloidaler metallösungen (1908) Ann. Phys., 330, pp. 377-445
  • Kerker, M., (1969) The Scattering of Light and Other Electromagnetic Radiation, 7, p. 666. , Academic Press: London
  • Xu, H., Wang, X.-H., Persson, M.P., Xu, H.Q., Käll, M., Johansson, P., Unified treatment of fluorescence and raman scattering processes near metal surfaces (2004) Phys. Rev. Lett., 93
  • Käll, M., Xu, H., Johansson, P., Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy (2005) J. Raman Spectrosc., 36, pp. 510-514
  • Johansson, P., Xu, H., Käll, M., Surface-enhanced Raman scattering and fluorescence near metal nanoparticles (2005) Phys. Rev. B: Condens. Matter Mater. Phys., 72
  • Wriedt, T., Mie theory: A review (2012) Springer Ser. Opt. Sci., 169, pp. 53-71
  • Purcell, E.M., Pennypacker, C.R., Scattering and absorption of light by nonspherical dielectric grains (1973) Astrophys. J., 186, p. 705
  • Goodman, J.J., Draine, B.T., Flatau, P.J., Application of fast-Fourier-transform techniques to the discrete-dipole approximation (1991) Opt. Lett., 16, pp. 1198-1200
  • Sherry, L.J., Jin, R., Mirkin, C.A., Schatz, G.C., Van Duyne, R.P., Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms (2006) Nano Lett., 6, pp. 2060-2065
  • Qin, L., Zou, S., Xue, C., Atkinson, A., Schatz, G.C., Mirkin, C.A., Designing, fabricating, and imaging Raman hot spots (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 13300-13303
  • Loke, V.L.Y., Huda, G.M., Donev, E.U., Schmidt, V., Hastings, J.T., Mengüç, M.P., Wriedt, T., Comparison between discrete dipole approximation and other modelling methods for the plasmonic response of gold nanospheres (2014) Appl. Phys. B: Lasers Opt., 115, pp. 237-246
  • Amendola, V., Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method (2016) Phys. Chem. Chem. Phys., 18, pp. 2230-2241
  • Wei, J.J., Yang, P., Portales, H., Albouy, P.A., Pileni, M.P., Collective surface plasmon resonances in two-dimensional assemblies of Au and Ag nanocrystals: Experiments and discrete dipole approximation simulation (2016) J. Phys. Chem. C, 120, pp. 13732-13738
  • Yee, K.S., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media (1966) IEEE Trans. Antennas Propag., 14, pp. 302-307
  • Lopata, K., Neuhauser, D., Multiscale Maxwell-Schrödinger modeling: A split field finite-difference time-domain approach to molecular nanopolaritonics (2009) J. Chem. Phys., 130
  • Zeng, Z., Liu, Y., Wei, J., Recent advances in surface-enhanced raman spectroscopy (SERS): Finite-difference time-domain (FDTD) method for SERS and sensing applications (2016) TrAC, Trends Anal. Chem., 75, pp. 162-173
  • Jin, J., (2002) The Finite Element Method in Electromagnetics, p. 846. , John Wiley & Sons: Hoboken, NJ
  • Savage, K.J., Hawkeye, M.M., Esteban, R., Borisov, A.G., Aizpurua, J., Baumberg, J.J., Revealing the quantum regime in tunnelling plasmonics (2012) Nature, 491, pp. 574-577
  • Scholl, J.A., García-Etxarri, A., Koh, A.L., Dionne, J.A., Observation of quantum tunneling between two plasmonic nanoparticles (2013) Nano Lett., 13, pp. 564-569
  • Marinica, D.C., Kazansky, A.K., Nordlander, P., Aizpurua, J., Borisov, A.G., Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer (2012) Nano Lett., 12, pp. 1333-1339
  • Zhu, W., Esteban, R., Borisov, A.G., Baumberg, J.J., Nordlander, P., Lezec, H.J., Aizpurua, J., Crozier, K.B., Quantum mechanical effects in plasmonic structures with subnanometre gaps (2016) Nat. Commun., 7, p. 11495
  • Nordlander, P., Molecular tuning of quantum plasmon resonances (2014) Science, 343, pp. 1444-1445
  • Esteban, R., Borisov, A.G., Nordlander, P., Aizpurua, J., Bridging quantum and classical plasmonics with a quantum-corrected model (2012) Nat. Commun., 3, p. 825
  • Marinica, D.C., Zapata, M., Nordlander, P., Kazansky, A.K., Echenique, P.M., Aizpurua, J., Borisov, A.G., Active quantum plasmonics (2015) Sci. Adv., 1, p. e1501095
  • Marinica, D.-C., Aizpurua, J., Borisov, A.G., Quantum effects in the plasmon response of bimetallic core-shell nanostructures (2016) Opt. Express, 24, p. 23941
  • Tan, S.F., Wu, L., Yang, J.K.W., Bai, P., Bosman, M., Nijhuis, C.A., Quantum plasmon resonances controlled by molecular tunnel junctions (2014) Science, 343, pp. 1496-1499
  • Wu, L., Duan, H., Bai, P., Bosman, M., Yang, J.K.W., Li, E., Fowler - Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles (2013) ACS Nano, 7, pp. 707-716
  • Zhang, P., Feist, J., Rubio, A., García-González, P., García-Vidal, F.J., Ab initio nanoplasmonics: The impact of atomic structure (2014) Phys. Rev. B: Condens. Matter Mater. Phys., 90
  • Xiang, H., Zhang, M., Zhang, X., Lu, G., Understanding quantum plasmonics from time-dependent orbital-free density functional theory (2016) J. Phys. Chem. C, 120, pp. 14330-14336
  • Gieseking, R.L., Ratner, M.A., Schatz, G.C., Semiempirical modeling of Ag nanoclusters: New parameters for optical property studies enable determination of double excitation contributions to plasmonic excitation (2016) J. Phys. Chem. A, 120, pp. 4542-4549
  • Morton, S.M., Silverstein, D.W., Jensen, L., Theoretical studies of plasmonics using electronic structure methods (2011) Chem. Rev., 111, pp. 3962-3994
  • Corni, S., Tomasi, J., Enhanced response properties of a chromophore physisorbed on a metal particle (2001) J. Chem. Phys., 114, pp. 3739-3751
  • Corni, S., Tomasi, J., Theoretical evaluation of Raman spectra and enhancement factors for a molecule adsorbed on a complex-shaped metal particle (2001) Chem. Phys. Lett., 342, pp. 135-140
  • Corni, S., Tomasi, J., Surface enhanced Raman scattering from a single molecule adsorbed on a metal particle aggregate: A theoretical study (2002) J. Chem. Phys., 116, pp. 1156-1164
  • Masiello, D.J., Schatz, G.C., Many-body theory of surface-enhanced Raman scattering (2008) Phys. Rev. A: At., Mol., Opt. Phys., 78
  • Morton, S.M., Jensen, L., A discrete interaction model/quantum mechanical method for describing response properties of molecules adsorbed on metal nanoparticles (2010) J. Chem. Phys., 133
  • Payton, J.L., Morton, S.M., Moore, J.E., Jensen, L., A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy (2012) J. Chem. Phys., 136
  • Payton, J.L., Morton, S.M., Moore, J.E., Jensen, L., A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering (2014) Acc. Chem. Res., 47, pp. 88-99
  • Moore, J.E., Morton, S.M., Jensen, L., Importance of correctly describing charge-transfer excitations for understanding the chemical effect in SERS (2012) J. Phys. Chem. Lett., 3, pp. 2470-2475
  • Rinaldi, J.M., Morton, S.M., Jensen, L., A discrete interaction model/quantum mechanical method for simulating nonlinear optical properties of molecules near metal surfaces (2013) Mol. Phys., 111, pp. 1322-1331
  • Chulhai, D.V., Jensen, L., Simulating surface-enhanced Raman optical activity using atomistic electrodynamics-quantum mechanical models (2014) J. Phys. Chem. A, 118, pp. 9069-9079
  • Arcisauskaite, V., Kongsted, J., Hansen, T., Mikkelsen, K.V., Charge transfer excitation energies in pyridine-silver complexes studied by a QM/MM method (2009) Chem. Phys. Lett., 470, pp. 285-288
  • Rinkevicius, Z., Li, X., Sandberg, J.A.R., Mikkelsen, K.V., Ågren, H., A hybrid density functional theory/molecular mechanics approach for linear response properties in heterogeneous environments (2014) J. Chem. Theory Comput., 10, pp. 989-1003
  • Rinkevicius, Z., Li, X., Sandberg, J.A., Ågren, H., Non-linear optical properties of molecules in heterogeneous environments: A quadratic density functional/molecular mechanics response theory (2014) Phys. Chem. Chem. Phys., 16, pp. 8981-8989
  • Rinkevicius, Z., Sandberg, J.A.R., Li, X., Linares, M., Norman, P., Ågren, H., Hybrid complex polarization propagator/molecular mechanics method for heterogeneous environments (2016) J. Chem. Theory Comput., 12, pp. 2661-2667
  • Li, X., Rinkevicius, Z., Ågren, H., Two-photon absorption of metal-assisted chromophores (2014) J. Chem. Theory Comput., 10, pp. 5630-5639
  • Li, X., Rinkevicius, Z., Ågren, H., Electronic circular dichroism of surface-adsorbed molecules by means of quantum mechanics capacitance molecular mechanics (2014) J. Phys. Chem. C, 118, pp. 5833-5840
  • Chen, H., Blaber, M.G., Standridge, S.D., Demarco, E.J., Hupp, J.T., Ratner, M.A., Schatz, G.C., Computational modeling of plasmon-enhanced light absorption in a multicomponent dye sensitized solar cell (2012) J. Phys. Chem. C, 116, pp. 10215-10221
  • Mullin, J., Valley, N., Blaber, M.G., Schatz, G.C., Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie Theory) methods for calculating surface enhanced raman and hyper-raman spectra (2012) J. Phys. Chem. A, 116, pp. 9574-9581
  • Mullin, J., Schatz, G.C., Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra (2012) J. Phys. Chem. A, 116, pp. 1931-1938
  • Chulhai, D.V., Chen, X., Jensen, L., Simulating ensemble-averaged surface-enhanced Raman scattering (2016) J. Phys. Chem. C, 120, pp. 20833-20842
  • Pipolo, S., Corni, S., Real-time description of the electronic dynamics for a molecule close to a plasmonic nanoparticle (2016) J. Phys. Chem. C, 120, pp. 28774-28781
  • Raghunathan, S., Nest, M., The lack of resonance problem in coherent control with real-time time-dependent density functional theory (2012) J. Chem. Theory Comput., 8, pp. 806-809
  • Raghunathan, S., Nest, M., Limits of the creation of electronic wave packets using time-dependent density functional theory (2012) J. Phys. Chem. A, 116, pp. 8490-8493
  • Habenicht, B.F., Tani, N.P., Provorse, M.R., Isborn, C.M., Two-electron Rabi oscillations in real-time time-dependent density-functional theory (2014) J. Chem. Phys., 141
  • Duan, S., Tian, G., Luo, Y., Theory for modeling of high resolution resonant and nonresonant Raman images (2016) J. Chem. Theory Comput., 12, pp. 4986-4995
  • Neal, S., Nip, A.M., Zhang, H., Wiashart, D.S., Rapid and accurate calculation of protein H-1 C-13 and N-15 chemical shifts (2003) J. Biomol. NMR, 26, pp. 215-240
  • Kohlhoff, K., Robustelli, P., Cavalli, A., Salvatella, X., Vendruscolo, M., Fast and accurate predictions of protein NMR chemical shifts from interatomic distances (2009) J. Am. Chem. Soc., 131, pp. 13894-13895
  • Shen, Y., Bax, A., Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology (2007) J. Biomol. NMR, 38, pp. 289-302
  • Shen, Y., Bax, A., SPARTA+: A modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network (2010) J. Biomol. NMR, 48, pp. 13-22
  • Sumowski, C.V., Hanni, M., Schweizer, S., Ochsenfeld, C., Sensitivity of ab initio vs empirical methods in computing structural effects on NMR chemical shifts for the example of peptides (2014) J. Chem. Theory Comput., 10, pp. 122-133
  • Helgaker, T., Jaszuński, M., Ruud, K., Ab initio methods for the calculation of NMR shielding and indirect spinspin coupling constants (1999) Chem. Rev., 99, pp. 293-352
  • Sebastiani, D., Parrinello, M., A new ab-initio approach for NMR chemical shifts in periodic systems (2001) J. Phys. Chem. A, 105, pp. 1951-1958
  • Putrino, A., Sebastiani, D., Parrinello, M., Generalized variational density functional perturbation theory (2000) J. Chem. Phys., 113, pp. 7102-7109
  • London, F., Quantum theory of interatomic currents in aromatic compounds.Thorie quantique des courants interatomiques dans les combinaisons aromatiques (1937) J. Phys. Radium, 8, pp. 397-409
  • Ditchfield, R., Self-consistent perturbation theory of diamagnetism (1974) Mol. Phys., 27, pp. 789-807
  • Wolinski, K., Hinton, J.F., Pulay, P., Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations (1990) J. Am. Chem. Soc., 112, pp. 8251-8260
  • Kutzelnigg, W., Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities (1980) Isr. J. Chem., 19, pp. 193-200
  • Schindler, M., Kutzelnigg, W., Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. II. Application to some simple molecules (1982) J. Chem. Phys., 76, pp. 1919-1933
  • Fukui, H., Theory and calculation of nuclear shielding constants (1997) Prog. Nucl. Magn. Reson. Spectrosc., 31, pp. 317-342
  • Gauss, J., Stanton, J., Coupled-cluster calculatioons of nuclear magnetic chemical shifts (1995) J. Chem. Phys., 103, pp. 3561-3577
  • De Dios, A., Pearson, J., Oldfield, E., Secondary and tertiary structural effects on protein NMR chemical shifts: An ab initio approach (1993) Science, 260, pp. 1491-1496
  • Manzoni, V., Lyra, M.L., Coutinho, K., Canuto, S., Comparison of polarizable continuum model and quantum mechanics/molecular mechanics solute electronic polarization: Study of the optical and magnetic properties of diazines in water (2011) J. Chem. Phys., 135
  • Zhu, T., Zhang, J.Z.H., He, X., Automated fragmentation QM/MM calculation of amide proton chemical shifts in proteins with explicit solvent model (2013) J. Chem. Theory Comput., 9, pp. 2104-2114
  • Helgaker, T., Jaszuński, M., Pecul, M., The quantum-chemical calculation of NMR indirect spinspin coupling constants (2008) Prog. Nucl. Magn. Reson. Spectrosc., 53, pp. 249-268
  • Gester, R.M., Georg, H.C., Canuto, S., Caputo, M.C., Provasi, P.F., NMR chemical shielding and spin-spin coupling constants of liquid NH3: A systematic investigation using the sequential QM/MM method (2009) J. Phys. Chem. A, 113, pp. 14936-14942
  • Wang, B., He, X., Merz, K.M., Quantum mechanical study of vicinal J spinspin coupling constants for the protein backbone (2013) J. Chem. Theory Comput., 9, pp. 4653-4659
  • Flaig, D., Beer, M., Ochsenfeld, C., Convergence of electronic structure with the size of the QM region: Example of QM/MM NMR shieldings (2012) J. Chem. Theory Comput., 8, pp. 2260-2271
  • Steinmann, C., Olsen, J.M.H., Kongsted, J., Nuclear magnetic shielding constants from quantum mechanical/molecular mechanical calculations using polarizable embedding: Role of the embedding potential (2014) J. Chem. Theory Comput., 10, pp. 981-988
  • Sebastiani, D., Rothlisberger, U., Nuclear magnetic resonance chemical shifts from hybrid DFT QM/MM calculations (2004) J. Phys. Chem. B, 108, pp. 2807-2815
  • Komin, S., Gossens, C., Tavernelli, I., Rothlisberger, U., Sebastiani, D., NMR solvent shifts of adenine in aqueous solution from hybrid QM/MM molecular dynamics simulations (2007) J. Phys. Chem. B, 111, pp. 5225-5232
  • Bagno, A., D'Amico, F., Saielli, G., Computing the NMR spectrum of a bulk ionic liquid phase by QM/MM methods (2006) J. Phys. Chem. B, 110, pp. 23004-23006
  • Pedone, A., Pavone, M., Menziani, M.C., Barone, V., Accurate first-principle prediction of 29Si and 17O NMR parameters in SiO2 polymorphs: The cases of zeolites sigma-2 and ferrierite (2008) J. Chem. Theory Comput., 4, pp. 2130-2140
  • Fang, C., Xie, Y., Johnston, M.R., Ruan, Y., Tang, B.Z., Peng, Q., Tang, Y., SERS and NMR studies of typical aggregation-induced emission molecules (2015) J. Phys. Chem. A, 119, pp. 8049-8054
  • Sundholm, D., Rauhalahti, M., Özcan, N., Mera-Adasme, R., Kussmann, J., Luenser, A., Ochsenfeld, C., Nuclear magnetic shieldings of stacked aromatic and antiaromatic molecules (2017) J. Chem. Theory Comput., 13, pp. 1952-1962
  • Gascón, J.A., Sproviero, E.M., Batista, V.S., QM/MM study of the NMR spectroscopy of the retinyl chromophore in visual rhodopsin (2005) J. Chem. Theory Comput., 1, pp. 674-685
  • Gascón, J.A., Leung, S.S.F., Batista, E.R., Batista, V.S., A self-consistent space-domain decomposition method for QM/MM computations of protein electrostatic potentials (2006) J. Chem. Theory Comput., 2, pp. 175-186
  • Askerka, M., Ho, J., Batista, E., Gascón, J., Batista, V., The MOD-QM/MM Method: Applications to Studies of Photosystem II and DNA G-Quadruplexes (2016) Methods Enzymol., 577, pp. 443-481
  • Ho, J., Newcomer, M.B., Ragain, C.M., Gascón, J.A., Batista, E.R., Loria, J.P., Batista, V.S., MoD-QM/MM structural refinement method: Characterization of hydrogen bonding in the Oxytricha nova G-quadruplex (2014) J. Chem. Theory Comput., 10, pp. 5125-5135
  • Wang, B., Brothers, E.N., Van Der Vaart, A., Merz, K.M., Jr., Fast semiempirical calculations for nuclear magnetic resonance chemical shifts: A divide-and-conquer approach (2004) J. Chem. Phys., 120, pp. 11392-11400
  • Wang, B., Merz, K.M., A fast QM/MM (quantum mechanical/molecular mechanical) approach to calculate nuclear magnetic resonance chemical shifts for macromolecules (2006) J. Chem. Theory Comput., 2, pp. 209-215
  • He, X., Wang, B., Merz, K.M., Jr., Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach (2009) J. Phys. Chem. B, 113, pp. 10380-10388
  • Zhang, W., Gascón, J., QM/MM investigation of structure and spectroscopic properties of a vanadium containing peroxidase (2008) J. Inorg. Biochem., 102, pp. 1684-1690
  • Pauwels, E., Claeys, J., Martins, D., Waroquier, M., Bifulco, G., Van Speybroeck, A., Madder, V., Accurate prediction of 1H chemical shifts in interstrand cross-linked DNA (2013) RSC Adv., 3, pp. 3925-3938
  • Saito, K., Ishikita, H., H atom positions and nuclear magnetic resonance chemical shifts of short H bonds in photoactive yellow protein (2012) Biochemistry, 51, pp. 1171-1177
  • Lancaster, K.M., Zaballa, M.E., Sproules, S., Sundararajan, M., Debeer, S., Richards, J.H., Vila, A.J., Gray, H.B., Outer-sphere contributions to the electronic structure of type zero copper proteins (2012) J. Am. Chem. Soc., 134, pp. 8241-8253
  • Fritz, M., Quinn, C.M., Wang, M., Hou, G., Lu, X., Koharudin, L.M., Polenova, T., Gronenborn, A.M., Toward closing the gap: Quantum mechanical calculations and experimentally measured chemical shifts of a microcrystalline lectin (2017) J. Phys. Chem. B, 121, pp. 3574-3585
  • Dickson, D.P., Berry, F.J., (1986) Mossbauer Spectroscopy, , Cambridge University Press: Cambridge, U.K
  • Neese, F., Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree-Fock and Kohn-Sham theory (2001) J. Chem. Phys., 115, pp. 11080-11096
  • Neese, F., Metal and ligand hyperfine couplings in transition metal complexes: The effect of spin-orbit coupling as studied by coupled perturbed Kohn-Sham theory (2003) J. Chem. Phys., 118, pp. 3939-3948
  • Neese, F., Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations (2005) J. Chem. Phys., 122
  • Moon, S., Patchkovskii, S., Salahub, D.R., QM/MM calculations of EPR hyperfine coupling constants in blue copper proteins (2003) J. Mol. Struct.: THEOCHEM, 632, pp. 287-295
  • Schöneboom, J.C., Neese, F., Thiel, W., Toward identification of the compound i reactive intermediate in cytochrome P450 chemistry: A QM/MM study of its EPR and Mössbauer parameters (2005) J. Am. Chem. Soc., 127, pp. 5840-5853
  • Sinnecker, S., Neese, F., QM/MM calculations with DFT for taking into account protein effects on the EPR and optical spectra of metalloproteins. Plastocyanin as a case study (2006) J. Comput. Chem., 27, pp. 1463-1475
  • Porro, C.S., Kumar, D., Devisser, S.P., Electronic properties of pentacoordinated heme complexes in cytochrome P450 enzymes: Search for an Fe(I) oxidation state (2009) Phys. Chem. Chem. Phys., 11, pp. 10219-10226
  • Radoul, M., Sundararajan, M., Potapov, A., Riplinger, C., Neese, F., Goldfarb, D., Revisiting the nitrosyl complex of myoglobin by high-field pulse EPR spectroscopy and quantum mechanical calculations (2010) Phys. Chem. Chem. Phys., 12, pp. 7276-7289
  • Sundararajan, M., Neese, F., Detailed QM/MM study of the electron paramagnetic resonance parameters of nitrosyl myoglobin (2012) J. Chem. Theory Comput., 8, pp. 563-574
  • Bernini, C., Pogni, R., Ruiz-Duenas, F.J., Martínez, A.T., Basosi, R., Sinicropi, A., EPR parameters of amino acid radicals in P. Eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level (2011) Phys. Chem. Chem. Phys., 13, pp. 5078-5098
  • Herbert, J., Zhang, X., Morrison, A., Liu, J., Beyond time-dependent density functional theory using only single excitations: Methods for computational studies of excited states in complex systems (2016) Acc. Chem. Res., 49, pp. 931-941
  • Podryabinkin, E., Shapeev, A., Active learning of linearly parametrized interatomic potentials (2017) Comput. Mater. Sci., 140, pp. 171-180
  • Csanyi, G., Albaret, T., Payne, M., De Vita, A., Learn on the fly: A hybrid classical and quantum-mechanical molecular dynamics simulation (2004) Phys. Rev. Lett., 93
  • Kermode, J.R., Albaret, T., Sherman, D., Bernstein, N., Gumbsch, P., Payne, M.C., Csányi, G., De Vita, A., Low-speed fracture instabilities in a brittle crystal (2008) Nature, 455, pp. 1224-1227
  • Sinitskiy, A.V., Voth, G.A., (2017) Quantum Mechanics/Coarse-Grained Molecular Mechanics (QM/CG-MM), , https://arxiv.org/abs/1709.09771, arXiv:1709.09771 [physics.chem-ph]. arXiv.org e-Print archive
  • Shen, L., Yang, W., Quantum mechanics/molecular mechanics method combined with hybrid all-atom and coarse-grained model: Theory and application on redox potential calculations (2016) J. Chem. Theory Comput., 12, pp. 2017-2027
  • Barone, V., The virtual multifrequency spectrometer: A new paradigm for spectroscopy (2016) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 6, pp. 86-110

Citas:

---------- APA ----------
Morzan, U.N., Alonso De Armiño, D.J., Foglia, N.O., Ramírez, F., González Lebrero, M.C., Scherlis, D.A. & Estrin, D.A. (2018) . Spectroscopy in Complex Environments from QM-MM Simulations. Chemical Reviews, 118(7), 4071-4113.
http://dx.doi.org/10.1021/acs.chemrev.8b00026
---------- CHICAGO ----------
Morzan, U.N., Alonso De Armiño, D.J., Foglia, N.O., Ramírez, F., González Lebrero, M.C., Scherlis, D.A., et al. "Spectroscopy in Complex Environments from QM-MM Simulations" . Chemical Reviews 118, no. 7 (2018) : 4071-4113.
http://dx.doi.org/10.1021/acs.chemrev.8b00026
---------- MLA ----------
Morzan, U.N., Alonso De Armiño, D.J., Foglia, N.O., Ramírez, F., González Lebrero, M.C., Scherlis, D.A., et al. "Spectroscopy in Complex Environments from QM-MM Simulations" . Chemical Reviews, vol. 118, no. 7, 2018, pp. 4071-4113.
http://dx.doi.org/10.1021/acs.chemrev.8b00026
---------- VANCOUVER ----------
Morzan, U.N., Alonso De Armiño, D.J., Foglia, N.O., Ramírez, F., González Lebrero, M.C., Scherlis, D.A., et al. Spectroscopy in Complex Environments from QM-MM Simulations. Chem. Rev. 2018;118(7):4071-4113.
http://dx.doi.org/10.1021/acs.chemrev.8b00026