Artículo

Alvarez-Paggi, D.; Hannibal, L.; Castro, M.A.; Oviedo-Rouco, S.; Demicheli, V.; Tórtora, V.; Tomasina, F.; Radi, R.; Murgida, D.H. "Multifunctional Cytochrome c: Learning New Tricks from an Old Dog" (2017) Chemical Reviews. 117(21):13382-13460
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cytochrome c (cyt c) is a small soluble heme protein characterized by a relatively flexible structure, particularly in the ferric form, such that it is able to sample a broad conformational space. Depending on the specific conditions, interactions, and cellular localization, different conformations may be stabilized, which differ in structure, redox properties, binding affinities, and enzymatic activity. The primary function is electron shuttling in oxidative phosphorylation, and is exerted by the so-called native cyt c in the intermembrane mitochondrial space of healthy cells. Under pro-apoptotic conditions, however, cyt c gains cardiolipin peroxidase activity, translocates into the cytosol to engage in the intrinsic apoptotic pathway, and enters the nucleus where it impedes nucleosome assembly. Other reported functions include cytosolic redox sensing and involvement in the mitochondrial oxidative folding machinery. Moreover, post-translational modifications such as nitration, phosphorylation, and sulfoxidation of specific amino acids induce alternative conformations with differential properties, at least in vitro. Similar structural and functional alterations are elicited by biologically significant electric fields and by naturally occurring mutations of human cyt c that, along with mutations at the level of the maturation system, are associated with specific diseases. Here, we summarize current knowledge and recent advances in understanding the different structural, dynamic, and thermodynamic factors that regulate the primary electron transfer function, as well as alternative functions and conformations of cyt c. Finally, we present recent technological applications of this moonlighting protein. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Multifunctional Cytochrome c: Learning New Tricks from an Old Dog
Autor:Alvarez-Paggi, D.; Hannibal, L.; Castro, M.A.; Oviedo-Rouco, S.; Demicheli, V.; Tórtora, V.; Tomasina, F.; Radi, R.; Murgida, D.H.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires', Ciudad Universitaria, Pab. 2, Piso 1, Buenos Aires, C1428EHA, Argentina
Department of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg, 79106, Germany
Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay
Palabras clave:Binding energy; Electric fields; Enzyme activity; Flexible structures; Machinery; Phospholipids; Phosphorylation; Cellular localization; Differential properties; Moonlighting proteins; Oxidative phosphorylation; Peroxidase activities; Post-translational modifications; Technological applications; Thermodynamic factors; Conformations; cytochrome c; animal; electron transport; enzymology; genetic procedures; human; kinetics; metabolism; mitochondrion; oxidation reduction reaction; thermodynamics; Animals; Biosensing Techniques; Cytochromes c; Electron Transport; Humans; Kinetics; Mitochondria; Oxidation-Reduction; Thermodynamics
Año:2017
Volumen:117
Número:21
Página de inicio:13382
Página de fin:13460
DOI: http://dx.doi.org/10.1021/acs.chemrev.7b00257
Título revista:Chemical Reviews
Título revista abreviado:Chem. Rev.
ISSN:00092665
CODEN:CHREA
CAS:cytochrome c, 9007-43-6, 9064-84-0; Cytochromes c
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00092665_v117_n21_p13382_AlvarezPaggi

Referencias:

  • Bertini, I., Cavallaro, G., Rosato, A., Cytochrome c: Occurrence and functions (2006) Chem. Rev., 106, pp. 90-115
  • Liu, J., Chakraborty, S., Hosseinzadeh, P., Yu, Y., Tian, S., Petrik, I., Bhagi, A., Lu, Y., Metalloproteins containing cytochrome, ironsulfur, or copper redox centers (2014) Chem. Rev., 114, pp. 4366-4369
  • Smith, L.J., Kahraman, A., Thornton, J.M., Heme proteins Diversity in structural characteristics, function, and folding (2010) Proteins: Struct., Funct., Genet., 78, pp. 2349-2368
  • Scott, R.A., Mauk, A.G., (1996) Cytochrome C: A Multidisciplinary Approach, , Eds.; University Science Books: Sausalito, CA
  • Gibney, B.R., Dutton, P.L., De novo design and synthesis of heme proteins (2000) Adv. Inorg. Chem., 51, pp. 409-456
  • Winkler, J.R., Gray, H.B., Electron flow through metalloproteins (2014) Chem. Rev., 114, pp. 3369-3380
  • Battistuzzi, G., Borsari, M., Sola, M., Redox properties of cytochrome c (2001) Antioxid. Redox Signaling, 3, pp. 279-291
  • Fedurco, M., Redox reactions of heme-containing metalloproteins: Dynamic effects of self-assembled monolayers on thermodynamics and kinetics of cytochrome c electron-transfer reactions (2000) Coord. Chem. Rev., 209, pp. 263-331
  • Galinato, M.G.I., Bowman, S.E.J., Kleingardner, J.G., Martin, S., Zhao, J., Sturhahn, W., Alp, E.E., Lehnert, N., Effects of protein structure on iron-polypeptide vibrational dynamic coupling in cytochrome c (2015) Biochemistry, 54, pp. 1064-1076
  • Sun, Y., Benabbas, A., Zeng, W., Kleingardner, J.G., Bren, K.L., Champion, P.M., Investigations of heme distortion, low-frequency vibrational excitations, and electron transfer in cytochrome c (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 6570-6575
  • Kleingardner, J.G., Bowman, S.E.J., Bren, K.L., The influence of heme ruffling on spin densities in ferricytochromes c probed by heme core 13C NMR (2013) Inorg. Chem., 52, pp. 12933-12946
  • Khoa Ly, H., Sezer, M., Wisitruangsakul, N., Feng, J.J., Kranich, A., Millo, D., Weidinger, I.M., Hildebrandt, P., Surface-enhanced vibrational spectroscopy for probing transient interactions of proteins with biomimetic interfaces: Electric field effects on structure, dynamics and function of cytochrome c (2011) FEBS J., 278, pp. 1382-1390
  • Murgida, D.H., Hildebrandt, P., Electron-transfer processes of cytochrome c at interfaces New insights by surface-enhanced resonance Raman spectroscopy (2004) Acc. Chem. Res., 37, pp. 854-861
  • Murgida, D.H., Hildebrandt, P., Disentangling interfacial redox processes of proteins by SERR spectroscopy (2008) Chem. Soc. Rev., 37, pp. 937-945
  • Alvarez-Paggi, D., Zitare, U., Murgida, D.H., The role of protein dynamics and thermal fluctuations in regulating cytochrome c/ cytochrome c oxidase electron transfer (2014) Biochim. Biophys. Acta, Bioenerg., 1837, pp. 1196-1207
  • Amacher, J.F., Zhong, F., Lisi, G.P., Zhu, M.Q., Alden, S.L., Hoke, K.R., Madden, D.R., Pletneva, E.V., A compact structure of cytochrome c trapped in a lysine-ligated state: Loop refolding and functional implications of a conformational switch (2015) J. Am. Chem. Soc., 137, pp. 8435-8449
  • Mirkin, N., Jaconcic, J., Stojanoff, V., Moreno, A., High resolution X-ray crystallographic structure of bovine heart cytochrome c and its application to the design of an electron transfer biosensor (2008) Proteins: Struct., Funct., Genet., 70, pp. 83-92
  • McClelland, L.J., Mou, T.C., Jeakins-Cooley, M.E., Sprang, S.R., Bowler, B.E., Structure of a mitochondrial cytochrome c conformer competent for peroxidase activity (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 6648-6653
  • Imai, M., Saio, T., Kumeta, H., Uchida, T., Inagaki, F., Ishimori, K., Investigation of the redox-dependent modulation of structure and dynamics in human cytochrome c (2016) Biochem. Biophys. Res. Commun., 469, pp. 978-984
  • Goldes, M.E., Jeakins-Cooley, M.E., McClelland, L.J., Mou, T.C., Bowler, B.E., Disruption of a hydrogen bond network in human versus spider monkey cytochrome c affects heme crevice stability (2016) J. Inorg. Biochem., 158, pp. 62-69
  • Babbitt, S.E., Sutherland, M.C., Francisco, B.S., Mendez, D.L., Kranz, R.G., Mitochondrial cytochrome c biogenesis: No longer an enigma (2015) Trends Biochem. Sci., 40, pp. 446-455
  • Mavridou, D.A.I., Ferguson, S.J., Stevens, J.M., Cytochrome c assembly (2013) IUBMB Life, 65, pp. 209-216
  • Hu, W., Kan, Z.Y., Mayne, L., Englander, S.W., Cytochrome c folds through foldon-dependent native-like intermediates in an ordered pathway (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. 3809-3814
  • Weinkam, P., Pletneva, E.V., Gray, H.B., Winkler, J.R., Wolynes, P.G., Electrostatic effects on funneled landscapes and structural diversity in denatured protein ensembles (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 1796-1801
  • Weinkam, P., Zimmermann, J., Romesberg, F.E., Wolynes, P.G., The folding energy landscape and free energy excitations of cytochrome c (2010) Acc. Chem. Res., 43, pp. 652-660
  • Englander, S.W., Mayne, L., The nature of protein folding pathways (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 15873-15880
  • Englander, S.W., Mayne, L., Krishna, M.M., Protein folding and misfolding: Mechanism and principles (2007) Q. Rev. Biophys., 40, pp. 287-326
  • Fazelinia, H., Xu, M., Cheng, H., Roder, H., Ultrafast hydrogen exchange reveals specific structural events during the initial stages of folding of cytochrome c (2014) J. Am. Chem. Soc., 136, pp. 733-740
  • Cherney, M.M., Bowler, B.E., Protein dynamics and function: Making new strides with an old warhorse, the alkaline conformational transition of cytochrome c (2011) Coord. Chem. Rev., 255, pp. 664-677
  • Abriata, L.A., Cassina, A., Tortora, V., Marin, M., Souza, J.M., Castro, L., Vila, A.J., Radi, R., Nitration of solavent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption nuclear magnetic resonance and optical spectroscopy studies (2009) J. Biol. Chem., 284, pp. 17-26
  • Capdevila, D., Alvarez-Paggi, D., Castro, M., Tortora, V., Demicheli, V., Estrin, D., Radi, R., Murgida, D.H., Coupling of tyrosine deprotonation and axial ligand exchange in nitrocytochrome c (2014) Chem. Commun., 50, pp. 2592-2594
  • Capdevila, D.A., Oviedo Rouco, S., Tomasina, F., Tortora, V., Demicheli, V., Radi, R., Murgida, D.H., Active site structure and peroxidase activity of oxidatively modified cytochrome c species in complexes with cardiolipin (2015) Biochemistry, 54, pp. 7491-7504
  • Garcia-Heredia, J.M., Diaz-Quintana, A., Salzano, M., Orzaez, M., Perez-Paya, E., Teixeira, M., De La Rosa, M.A., Diaz-Moreno, I., Tyrosine phosphorylation turns alkaline transition into a biologically relevant process and makes human cytochrome c behave as an antiapoptotic switch (2011) JBIC, J. Biol. Inorg. Chem., 16, pp. 1155-1168
  • Ascenzi, P., Coletta, M., Wilson, M.T., Fiorucci, L., Marino, M., Polticelli, F., Sinibaldi, F., Santucci, R., Cardiolipin-cytochrome c complex: Switching cytochrome c from an electron-transfer shuttle to a myoglobin-and a peroxidase-like heme-protein (2015) IUBMB Life, 67, pp. 98-109
  • Capdevila, D.A., Marmisolle, W.A., Tomasina, F., Demicheli, V., Portela, M., Radi, R., Murgida, D.H., Specific methionine oxidation of cytochrome c in complexes with zwitterionic lipids by hydrogen peroxide: Potential implications for apoptosis (2015) Chem. Sci., 6, pp. 705-713
  • De Rocco, D., Cerqua, C., Goffrini, P., Russo, G., Pastore, A., Meloni, F., Nicchia, E., Salviati, L., Mutations of cytochrome c identified in patients with thrombocytopenia THC4 affect both apoptosis and cellular bioenergetics (2014) Biochim. Biophys. Acta, Mol. Basis Dis., 1842, pp. 269-274
  • Liptak, M.D., Fagerlund, R.D., Ledgerwood, E.C., Wilbanks, S.M., Bren, K.L., The proapoptotic G41S mutation to human cytochrome c alters the heme electronic structure and increases the electron self-exchange rate (2011) J. Am. Chem. Soc., 133, pp. 1153-1155
  • Chretien, D., Benit, P., Ha, H., Keipert, S., El-Khoury, S., Chang, Y., Jastroch, M., Rak, M., (2017) Mitochondria Are Physiologically Maintained at Close to 50 C, , BiorXiv
  • Nakano, M., Arai, Y., Kotera, I., Okabe, K., Kamei, Y., Nagai, T., Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response (2017) PLoS One, 12, p. e0172344
  • Vladimirov, Y.A., Proskurnina, E.V., Alekseev, A.V., Molecular mechanisms of apoptosis Structure of cytochrome c-cardiolipin complex (2013) Biochemistry (Moscow), 78, pp. 1086-1097
  • Kulikov, A.V., Shilov, E.S., Mufazalov, I.A., Gogvadze, V., Nedospasov, S.A., Zhivotovsky, B., Cytochrome c: The Achilles' heel in apoptosis (2012) Cell. Mol. Life Sci., 69, pp. 1787-1797
  • Ow, Y.P., Green, D.R., Hao, Z., Mak, T.W., Cytochrome c: Functions beyond respiration (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 532-542
  • Kagan, V.E., Bayir, H.A., Belikova, N.A., Kapralov, O., Tyurina, Y.Y., Tyurin, V.A., Jiang, J., Kochanek, P.M., Cytochrome c/cardiolipin relations in mitochondria: A kiss of death (2009) Free Radical Biol. Med., 46, pp. 1439-1453
  • Gonzalez-Arzola, K., Diaz-Moreno, I., Cano-Gonzalez, A., Diaz-Quintana, A., Velazquez-Campoy, A., Moreno-Beltran, B., Lopez-Rivas, A., De La Rosa, M.A., Structural basis for inhibition of the histone chaperone activity of SET/TAF-I? By cytochrome c (2015) Proc. Natl. Acad. Sci. U. S. A., 112, pp. 9908-9913
  • Yamanaka, T., (1992) The Biochemistry of Bacterial Cytochromes, , Japan Scientific Societies Press, Springer-Verlag: New York
  • Bowman, S.E.J., Bren, K.L., The chemistry and biochemistry of heme c: Functional bases for covalent attachment (2008) Nat. Prod. Rep., 25, pp. 1118-1130
  • Palmer, G., Reedijk, J., Nonmenclature of electron-transfer proteins (1991) Biochim. Biophys. Acta, Bioenerg., 1060, pp. 599-611
  • Ambler, R.P., Sequence variability in bacterial cytochromes c (1991) Biochim. Biophys. Acta, Bioenerg., 1058, pp. 42-47
  • Gibson, H.R., Mowat, C.G., Miles, C.S., Li, B.R., Leys, D., Reid, G.A., Chapman, S.K., Structural and functional studies on dhc, the diheme cytochrome c from rhodobacter sphaeroides, and its interaction with shp, the sphaeroides heme protein (2006) Biochemistry, 45, pp. 6363-6371
  • Sousa, F.L., Alves, R.J., Ribeiro, M.A., Pereira-Leal, J.B., Teixeira, M., Pereira, M.M., The superfamily of heme-copper oxygen reductases: Types and evolutionary considerations (2012) Biochim. Biophys. Acta, Bioenerg., 1817, pp. 629-637
  • Dumont, M.E., Cardillo, T.S., Hayes, M.K., Sherman, F., Role of cytochrome c heme lyase in mitochondrial import and accumulation of cytochrome c in Saccharomyces cerevisiae (1991) Mol. Cell. Biol., 11, pp. 5487-5496
  • San Francisco, B., Bretsnyder, E.C., Kranz, R.G., Human mitochondrial holocytochrome c synthases heme binding, maturation determinants, and complex formation with cytochrome c (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. E788-E797
  • Page, M.D., Sambongi, Y., Ferguson, S.J., Contrasting routes of c-type cytochrome assembly in mitochondria, chloroplasts and bacteria (1998) Trends Biochem. Sci., 23, pp. 103-108
  • Xie, Z., Merchant, S., The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes (1996) J. Biol. Chem., 271, pp. 4632-4639
  • Barupala, D.P., Dzul, S.P., Riggs-Gelasco, P.J., Stemmler, T.L., Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors (2016) Arch. Biochem. Biophys., 592, pp. 60-75
  • Chung, J., Chen, C., Paw, B.H., Heme metabolism and erythropoiesis (2012) Curr. Opin. Hematol., 19, pp. 156-162
  • Hamel, P., Corvest, V., Giege, P., Bonnard, G., Biochemical requirements for the maturation of mitochondrial c-type cytochromes (2009) Biochim. Biophys. Acta, Mol. Cell Res., 1793, pp. 125-138
  • Krishnamurthy, P.C., Du, G., Fukuda, Y., Sun, D., Sampath, J., Mercer, K.E., Wang, J., Schuetz, J.D., Identification of a mammalian mitochondrial porphyrin transporter (2006) Nature, 443, pp. 586-589
  • Bonnard, G., Corvest, V., Meyer, E.H., Hamel, P.P., Redox processes controlling the biogenesis of c-Type cytochromes (2010) Antioxid. Redox Signaling, 13, pp. 1385-1401
  • Kranz, R.G., Richard-Fogal, C., Taylor, J.S., Frawley, E.R., Cytochrome c biogenesis: Mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control (2009) Microbiol. Mol. Biol. Rev., 73, pp. 510-528
  • Richard-Fogal, C.L., Frawley, E.R., Bonner, E.R., Zhu, H., San Francisco, B., Kranz, R.G., A conserved haem redox and trafficking pathway for cofactor attachment (2009) EMBO J., 28, pp. 2349-2359
  • San Francisco, B., Bretsnyder, E.C., Rodgers, K.R., Kranz, R.G., Heme ligand identification and redox properties of the cytochrome c synthetase, CcmF (2011) Biochemistry, 50, pp. 10974-10985
  • Babbitt, S.E., Francisco, B.S., Mendez, D.L., Lukat-Rodgers, G.S., Rodgers, K.R., Bretsnyder, E.C., Kranz, R.G., Mechanisms of mitochondrial holocytochrome c synthase and the key roles played by cysteines and histidine of the heme attachment site, Cys-XX-Cys-His (2014) J. Biol. Chem., 289, pp. 28795-28807
  • Babbitt, S.E., San Francisco, B., Bretsnyder, E.C., Kranz, R.G., Conserved residues of the human mitochondrial holocytochrome c synthase mediate interactions with heme (2014) Biochemistry, 53, pp. 5261-5271
  • Wimplinger, I., Shaw, G.M., Kutsche, K., HCCS loss-of-function missense mutation in a female with bilateral microphthalmia and sclerocornea: A novel gene for severe ocular malformations? (2007) Mol. Vis., 13, pp. 1475-1482
  • Allen, J.W.A., Cytochrome c biogenesis in mitochondria-Systems III and v (2011) FEBS J., 278, pp. 4198-4216
  • Diekert, K., De Kroon, A.I.P.M., Ahting, U., Niggemeyer, B., Neupert, W., De Kruijff, B., Lill, R., Apocytochrome c requires the TOM complex for translocation across the mitochondrial outer membrane (2001) EMBO J., 20, pp. 5626-5635
  • Kleingardner, J.G., Bren, K.L., Comparing substrate specificity between cytochrome c maturation and cytochrome c heme lyase systems for cytochrome c biogenesis (2011) Metallomics, 3, pp. 396-403
  • Zaidi, S., Hassan, M.I., Islam, A., Ahmad, F., The role of key residues in structure, function, and stability of cytochrome-c (2014) Cell. Mol. Life Sci., 71, pp. 229-255
  • Tanaka, N., Yamane, T., Tsukihara, T., Ashida, T., Kakudo, M., The crystal structure of bonito (katsuo) ferrocytochrome c at 2.3 a resolution II structure and function (1975) J. Biochem., 77, pp. 147-162
  • Takano, T., Dickerson, R.E., Redox conformation changes in refined tuna cytochrome c (1980) Proc. Natl. Acad. Sci. U. S. A., 77, pp. 6371-6375
  • Ochi, H., Hata, Y., Tanaka, N., Kakudo, M., Sakurai, T., Aihara, S., Morita, Y., Huber, R., Structure of rice ferricytochrome c at 2 Å resolution (1983) J. Mol. Biol., 166, pp. 407-418
  • Louie, G.V., Brayer, G.D., High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c (1990) J. Mol. Biol., 214, pp. 527-555
  • Berghuis, A.M., Brayer, G.D., Oxidation state-dependent conformational changes in cytochrome c (1992) J. Mol. Biol., 223, pp. 959-976
  • Berghuis, A.M., Guillemette, J.G., Smith, M., Brayer, G.D., Mutation of tyrosine-67 to phenylalanine in cytochrome c significantly alters the local heme environment (1994) J. Mol. Biol., 235, pp. 1326-1341
  • Murphy, M.E.P., Fetrow, J.S., Burton, R.E., Brayer, G.D., The structure and function of omega loop A replacements in cytochrome c (1993) Protein Sci., 2, pp. 1429-1440
  • Murphy, M.E.P., Nall, B.T., Brayer, G.D., Structure determination and analysis of yeast iso-2-cytochrome c and a composite mutant protein (1992) J. Mol. Biol., 227, pp. 160-176
  • Berghuis, A.M., Guillemette, J.G., McLendon, G., Sherman, F., Smith, M., Brayer, G.D., The role of a conserved internal water molecule and its associated hydrogen bond network in cytochrfome c (1994) J. Mol. Biol., 236, pp. 786-799
  • Lo, T.P., Guillemette, J.G., Louie, G.V., Smith, M., Brayer, G.D., Structural studies of the roles of residues 82 and 85 at the interactive face of cytochrome c (1995) Biochemistry, 34, pp. 163-171
  • Lo, T.P., Komar-Panicucci, S., Sherman, F., McLendon, G., Brayer, G.D., Structural and functional effects of multiple mutations at distal sites in cytochrome c (1995) Biochemistry, 34, pp. 5259-5268
  • Lo, T.P., Murphy, M.E.P., Guy Guillemette, J., Smith, M., Brayer, G.D., Replacements in a conserved leucine cluster in the hydrophobic heme pocket of cytochrome c (1995) Protein Sci., 4, pp. 198-208
  • Rafferty, S.P., Guillemette, J.G., Berghuis, A.M., Smith, M., Brayer, G.D., Mauk, A.G., Mechanistic and structural contributions of critical surface and internal residues to cytochrome c electron transfer reactivity (1996) Biochemistry, 35, pp. 10784-10792
  • Baistrocchi, P., Banci, L., Bertini, I., Turano, P., Bren, K.L., Gray, H.B., Three-dimensional solution structure of saccharomyces cerevisiae reduced iso-1-cytochrome c (1996) Biochemistry, 35, pp. 13788-13796
  • Banci, L., Bertini, I., Bren, K.L., Gray, H.B., Sompornpisut, P., Turano, P., Solution structure of oxidized saccharomyces cerevisiae iso-1-cytochrome c (1997) Biochemistry, 36, pp. 8992-9001
  • Bushnell, G.W., Louie, G.V., Brayer, G.D., High-resolution three-dimensional structure of horse heart cytochrome c (1990) J. Mol. Biol., 214, pp. 585-595
  • Sanishvili, R., Volz, K.W., Westbrook, E.M., Margoliash, E., The low ionic strength crystal structure of horse cytochrome c at 2.1 Å resolution and comparison with its high ionic strength counterpart (1995) Structure, 3, pp. 707-716
  • Qi, P.X., Beckman, R.A., Wand, A.J., Solution structure of horse heart ferricytochrome c and detection of redox-related structural changes by high-resolution 1h nmr (1996) Biochemistry, 35, pp. 12275-12286
  • Banci, L., Bertini, I., Gray, H.B., Luchinat, C., Reddig, T., Rosato, A., Turano, P., Solution structure of oxidized horse heart cytochrome c (1997) Biochemistry, 36, pp. 9867-9877
  • Banci, L., Bertini, I., Huber, G.J., Spyroulias, A.G., Turano, P., Solution structure of reduced horse heart cytochrome c (1999) JBIC, J. Biol. Inorg. Chem., 4, pp. 21-31
  • Feng, Y., Roder, H., Englander, S.W., Wand, A.J., Di Stefano, D.L., Proton resonance assignments of horse ferricytochrome c (1989) Biochemistry, 28, pp. 195-203
  • Feng, Y., Englander, S.W., Salt-dependent structure change and ion binding in cytochrome c studied by two-dimensional proton NMR (1990) Biochemistry, 29, pp. 3505-3509
  • Feng, Y., Roder, H., Englander, S.W., Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c (1990) Biochemistry, 29, pp. 3494-3504
  • Feng, Y.Q., Roder, H., Englander, S.W., Assignment of paramagnetically shifted resonances in the 1H NMR spectrum of horse ferricytochrome c (1990) Biophys. J., 57, pp. 15-22
  • Fulop, V., Sam, K.A., Ferguson, S.J., Ginger, M.L., Allen, J.W.A., Structure of a trypanosomatid mitochondrial cytochrome-c with heme attached via only one thioether bond and implications for the substrate recognition requirements of heme lyase (2009) FEBS J., 276, pp. 2822-2832
  • Jasion, V.S., Poulos, T.L., Leishmania major peroxidase is a cytochrome c peroxidase (2012) Biochemistry, 51, pp. 2453-2460
  • Tognaccini, L., Ciaccio, C., D'Oria, V., Cervelli, M., Howes, B.D., Coletta, M., Mariottini, P., Fiorucci, L., Structurefunction relationships in human cytochrome c: The role of tyrosine 67 (2016) J. Inorg. Biochem., 155, pp. 56-66
  • Paul, S.S., Sil, P., Haldar, S., Mitra, S., Chattopadhyay, K., Subtle change in the charge distribution of surface residues may affect the secondary functions of cytochrome c (2015) J. Biol. Chem., 290, pp. 14476-14490
  • Shelnutt, A., Song, X.Z., Ma, J.G., Jia, S.L., Jentzen, W., Medforth, J., Medforth, J., Nonplanar porphyrins and their significance in proteins (1998) Chem. Soc. Rev., 27, pp. 31-42
  • Liptak, M.D., Wen, X., Bren, K.L., NMR and DFT investigation of heme ruffling: Functional implications for cytochrome c (2010) J. Am. Chem. Soc., 132, pp. 9753-9763
  • Pierron, D., Opazo, J.C., Heiske, M., Papper, Z., Uddin, M., Chand, G., Wildman, D.E., Grossman, L.I., Silencing, positive selection and parallel evolution: Busy history of primate cytochromes c (2011) PLoS One, 6, p. e26269
  • Bertini, I., Grassi, E., Luchinat, C., Quattrone, A., Saccenti, E., Monomorphism of human cytochrome c (2006) Genomics, 88, pp. 669-672
  • Hennig, B., Change of cytochrome c structure during development of the mouse (1975) Eur. J. Biochem., 55, pp. 167-183
  • Schmidt, T.R., Wildman, D.E., Uddin, M., Opazo, J.C., Goodman, M., Grossman, L.I., Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 6379-6384
  • Pierron, D., Wildman, D.E., Huttemann, M., Letellier, T., Grossman, L.I., Evolution of the couple cytochrome c and cytochrome c oxidase in primates (2012) Adv. Exp. Med. Biol., 748, pp. 185-213
  • Hoang, L., Maity, H., Krishna, M.M.G., Lin, Y., Englander, S.W., Folding units govern the cytochrome c alkaline transition (2003) J. Mol. Biol., 331, pp. 37-43
  • Hannibal, L., Tomasina, F., Capdevila, D.A., Demicheli, V., Tortora, V., Alvarez-Paggi, D., Jemmerson, R., Radi, R., Alternative conformations of cytochrome c: Structure, function, and detection (2016) Biochemistry, 55, pp. 407-428
  • Garman, E.F., Radiation damage in macromolecular crystallography: What is it and why should we care? (2010) Acta Crystallogr., Sect. D: Biol. Crystallogr., 66, pp. 339-351
  • Corbett, M.C., Latimer, M.J., Poulos, T.L., Sevrioukova, I.F., Hodgson, K.O., Hedman, B., Photoreduction of the active site of the metalloprotein putidaredoxin by synchrotron radiation (2000) Acta Crystallogr., Sect. D: Biol. Crystallogr., 63, pp. 951-960
  • Kekilli, D., Moreno-Chicano, T., Chaplin, A.K., Horrell, S., Dworkowski, F.S.N., Worrall, J.A.R., Strange, R.W., Hough, M.A., Photoreduction and validation of haem-ligand intermediate states in protein crystals by in situ single-crystal spectroscopy and diffraction (2017) IUCrJ, 4, pp. 263-270
  • Baxter, S.M., Fetrow, J.S., Hydrogen exchange behavior of [U-15N]-labeled oxidized and oeduced iso-1-cytochrome c (1999) Biochemistry, 38, pp. 4493-4503
  • Turner, D.L., Williams, R.J.P., 1H-and 13C-NMR investigation of redox-state-dependent and temperature-dependent conformation changes in horse cytochrome c (1993) Eur. J. Biochem., 211, pp. 555-562
  • Boyd, J., Dobson, C.M., Morar, A.S., Williams, R.J.P., Pielak, G.J., 1H and 15N hyperfine shifts of cytochrome c (1999) J. Am. Chem. Soc., 121, pp. 9247-9248
  • Gao, Y., Boyd, J., Pielak, G.J., Williams, R.J.P., Comparison of reduced and oxidized yeast iso-1-cytochrome c using proton paramagnetic shifts (1991) Biochemistry, 30, pp. 1928-1934
  • Fetrow, J.S., Baxter, S.M., Assignment of 15N chemicalsShifts and 15N relaxation measurements for oxidized and reduced iso-1-cytochrome c (1999) Biochemistry, 38, pp. 4480-4492
  • Volkov, A.N., Vanwetswinkel, S., Van De Water, K., Van Nuland, N.A.J., Redox-dependent conformational changes in eukaryotic cytochromes revealed by paramagnetic NMR spectroscopy (2012) J. Biomol. NMR, 52, pp. 245-256
  • Sakamoto, K., Kamiya, M., Imai, M., Shinzawa-Itoh, K., Uchida, T., Kawano, K., Yoshikawa, S., Ishimori, K., NMR basis for interprotein electron transfer gating between cytochrome c and cytochrome c oxidase (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 12271-12276
  • Galinato, M.G., Kleingardner, J.G., Bowman, S.E.J., Alp, E.E., Zhao, J., Bren, K.L., Lehnert, N., Heme-protein vibrational couplings in cytochrome c provide a dynamic link that connects the heme-iron and the protein surface (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 8896-8900
  • Sakamoto, K., Kamiya, M., Uchida, T., Kawano, K., Ishimori, K., Redox-controlled backbone dynamics of human cytochrome c revealed by 15N NMR relaxation measurements (2010) Biochem. Biophys. Res. Commun., 398, pp. 231-236
  • Knapp, J.A., Pace, C.N., Guanidine hydrochloride and acid denaturation of horse, cow, and Candida krusei cytochromes c (1974) Biochemistry, 13, pp. 1289-1294
  • Godbole, S., Hammack, B., Bowler, B.E., Measuring denatured state energetics: Deviations from random coil behavior and implications for the folding of iso-1-cytochrome c1 (2000) J. Mol. Biol., 296, pp. 217-228
  • Lett, C.M., Rosu-Myles, M.D., Frey, H.E., Guillemette, J.G., Rational design of a more stable yeast iso-1-cytochrome c (1999) Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1432, pp. 40-48
  • Thielges, M.C., Zimmermann, J., Dawson, P.E., Romesberg, F.E., The determinants of stability and folding in evolutionarily diverged cytochromes c (2009) J. Mol. Biol., 388, pp. 159-167
  • Filosa, A., English, M.A., Probing local thermal stabilities of bovine, horse, and tuna ferricytochromes c at pH 7 (2000) J. Biol. Inorg. Chem., 5, pp. 448-454
  • Moza, B., Qureshi, S.H., Ahmad, F., Equilibrium studies of the effect of difference in sequence homology on the mechanism of denaturation of bovine and horse cytochromes-c (2003) Biochim. Biophys. Acta, Proteins Proteomics, 1646, pp. 49-56
  • Santucci, R., Ascoli, F., The Soret circular dichroism spectrum as a probe for the heme Fe(III)-Met(80) axial bond in horse cytochrome c (1997) J. Inorg. Biochem., 68, pp. 211-214
  • Battistuzzi, G., Borsari, M., Cowan, J.A., Ranieri, A., Sola, M., Control of cytochrome c redox potential: Axial ligation and protein environment effects (2002) J. Am. Chem. Soc., 124, pp. 5315-5324
  • Barker, P.D., Ferguson, S.J., Still a puzzle: Why is haem covalently attached in c-type cytochromes? (1999) Structure, 7, pp. R281-R290
  • Cowley, A.B., Lukat-Rodgers, G.S., Rodgers, K.R., Benson, D.R., A possible role for the covalent heme-protein linkage in cytochrome c revealed via comparison of N-acetylmicroperoxidase-8 and a synthetic, monohistidine-coordinated heme peptide (2004) Biochemistry, 43, pp. 1656-1666
  • Lu, Y., Casimiro, D.R., Bren, K.L., Richards, J.H., Gray, H.B., Structurally engineered cytochromes with unusual ligand-binding properties: Expression of Saccharomyces cerevisiae Met-80-Ala iso-1-cytochrome c (1993) Proc. Natl. Acad. Sci. U. S. A., 90, pp. 11456-11459
  • Raphael, A.L., Gray, H.B., Semisynthesis of axial-ligand (position 80) mutants of cytochrome c (1991) J. Am. Chem. Soc., 113, pp. 1038-1040
  • Silkstone, G., Jasaitis, A., Wilson, M.T., Vos, M.H., Ligand dynamics in an electron transfer protein: Picosecond geminate recombination of carbon monoxide to heme in mutant forms of cytochrome c (2007) J. Biol. Chem., 282, pp. 1638-1649
  • Satoh, T., Itoga, A., Isogai, Y., Kurihara, M., Yamada, S., Natori, M., Suzuki, N., Arahira, M., Increasing the conformational stability by replacement of heme axial ligand in c-type cytochrome (2002) FEBS Lett., 531, pp. 543-547
  • Hirota, S., Hattori, Y., Nagao, S., Taketa, M., Komori, H., Kamikubo, H., Wang, Z., Sugiura, Y., Cytochrome c polymerization by successive domain swapping at the C-terminal helix (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 12854-12859
  • Hirota, S., Yamashiro, N., Wang, Z., Nagao, S., Effect of methionine80 heme coordination on domain swapping of cytochrome c (2017) JBIC, J. Biol. Inorg. Chem., 22, p. 705
  • Santoni, E., Scatragli, S., Sinibaldi, F., Fiorucci, L., Santucci, R., Smulevich, G., A model for the misfolded bis-His intermediate of cytochrome c: The 1-56 N-fragment (2004) J. Inorg. Biochem., 98, pp. 1067-1077
  • Bernad, S., Oellerich, S., Soulimane, T., Noinville, S., Baron, M.H., Paternostre, M., Lecomte, S., Interaction of horse heart and Thermus thermophilus type c cytochromes with phospholipid vesicles and hydrophobic surfaces (2004) Biophys. J., 86, pp. 3863-3872
  • Oellerich, S., Wackerbarth, H., Hildebrandt, P., Spectroscopic characterization of nonnative conformational states of cytochrome c (2002) J. Phys. Chem. B, 106, pp. 6566-6580
  • Droghetti, E., Oellerich, S., Hildebrandt, P., Smulevich, G., Heme coordination states of unfolded ferrous cytochrome c (2006) Biophys. J., 91, pp. 3022-3031
  • Colon, W., Elove, G.A., Wakem, L.P., Sherman, F., Roder, H., Side chain packing of the N-and C-terminal helices plays a critical role in the kinetics of cytochrome c folding (1996) Biochemistry, 35, pp. 5538-5549
  • Auld, D.S., Pielak, G.J., Constraints on amino acid substitutions in the N-terminal helix of cytochrome c explored by random mutagenesis (1991) Biochemistry, 30, pp. 8684-8690
  • Fredericks, Z.L., Pielak, G.J., Exploring the interface between the N-and C-terminal helixes of cytochrome c by random mutagenesis within the C-terminal helix (1993) Biochemistry, 32, pp. 929-936
  • Black, K.M., Clark-Lewis, I., Wallace, C.J.A., Conserved tryptophan in cytochrome c: Importance of the unique side-chain features of the indole moiety (2001) Biochem. J., 359, pp. 715-720
  • Caffrey, M.S., Cusanovich, M.A., Role of the highly conserved tryptophan of cytochrome c in stability (1993) Arch. Biochem. Biophys., 304, pp. 205-208
  • Luntz, T.L., Schejter, A., Garber, E.A., Margoliash, E., Structural significance of an internal water molecule studied by sitedirected mutagenesis of tyrosine-67 in rat cytochrome c (1989) Proc. Natl. Acad. Sci. U. S. A., 86, pp. 3524-3528
  • Schroeder, H.R., McOdimba, F.A., Guillemette, J.G., Kornblatt, J.A., The polarity of tyrosine 67 in yeast iso-1-cytochrome c monitored by second derivative spectroscopy (1997) Biochem. Cell Biol., 75, pp. 191-197
  • Alvarez-Paggi, D., Castro, M.A., Tortora, V., Castro, L., Radi, R., Murgida, D.H., Electrostatically driven second-sphere ligand switch between high and low reorganization energy forms of native cytochrome c (2013) J. Am. Chem. Soc., 135, pp. 4389-4397
  • Battistuzzi, G., Bortolotti, C.A., Bellei, M., Di Rocco, G., Salewski, J., Hildebrandt, P., Sola, M., Role of Met80 and Tyr67 in the low-pH conformational equilibria of cytochrome c (2012) Biochemistry, 51, pp. 5967-5978
  • Ying, T., Wang, Z.H., Lin, Y.W., Xie, J., Tan, X., Huang, Z.X., Tyrosine-67 in cytochrome c is a possible apoptotic trigger controlled by hydrogen bonds via a conformational transition (2009) Chem. Commun., pp. 4512-4514
  • Lan, W., Zhonghua, W., Yang, Z., Ying, T., Zhang, X., Tan, X., Liu, M., Huang, Z.X., Structural basis for cytochrome c Y67H mutant to function as a peroxidase (2014) PLoS One, 9, p. e107305
  • Grant Mauk, A., Electron transfer in genetically engineered proteins. The cytochrome c paradigm (1991) Long-Range Electron Transfer in Biology, pp. 131-157. , Springer Berlin Heidelberg: Berlin, Heidelberg
  • Rafferty, S.P., Pearce, L.L., Barker, P.D., Guillemette, J.G., Kay, C.M., Smith, M., Mauk, A.G., Electrochemical, kinetic, and circular dichroic consequences of mutations at position 82 of yeast iso-1-cytochrome c (1990) Biochemistry, 29, pp. 9365-9369
  • Hampsey, D.M., Das, G., Sherman, F., Amino acid replacements in yeast iso-1-cytochrome c Comparison with the phylogenetic series and the tertiary structure of related cytochromes c (1986) J. Biol. Chem., 261, pp. 3259-3271
  • Lan, W., Wang, Z., Yang, Z., Zhu, J., Ying, T., Jiang, X., Zhang, X., Tan, X., Conformational toggling of yeast iso-1-cytochrome c in the oxidized and reduced states (2011) PLoS One, 6, p. e27219
  • Wallace, C.J.A., Clark-Lewis, I., A rationale for the absolute conservation of Asn70 and Pro71 in mitochondrial cytochromes c suggested by protein engineering (1997) Biochemistry, 36, pp. 14733-14740
  • Wallace, C.J., Mascagni, P., Chait, B.T., Collawn, J.F., Paterson, Y., Proudfoot, A.E., Kent, S.B., Substitutions engineered by chemical synthesis at three conserved sites in mitochondrial cytochrome c Thermodynamic and functional consequences (1989) J. Biol. Chem., 264, pp. 15199-15209
  • Sato, W., Hitaoka, S., Inoue, K., Imai, M., Saio, T., Uchida, T., Shinzawa-Itoh, K., Ishimori, K., Energetic mechanism of cytochrome c-cytochrome c oxidase electron transfer complex formation under turnover conditions revealed by mutational effects and docking simulation (2016) J. Biol. Chem., 291, pp. 15320-15331
  • Kalanxhi, E., Wallace, C., Cytochrome c impaled: Investigation of the extended lipid anchorage of a soluble protein to mitochondrial membrane models (2007) Biochem. J., 407, pp. 179-187
  • Alvarez-Paggi, D., Martin, D.F., DeBiase, P.M., Hildebrandt, P., Marti, M.A., Murgida, D.H., Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes (2010) J. Am. Chem. Soc., 132, pp. 5769-5778
  • Sharonov, G.V., Feofanov, A.V., Bocharova, O.V., Astapova, M.V., Dedukhova, V.I., Chernyak, B.V., Dolgikh, D.A., Kirpichnikov, M.P., Comparative analysis of proapoptotic activity of cytochrome c mutants in living cells (2005) Apoptosis, 10, pp. 797-808
  • Chertkova, R.V., Sharonov, G.V., Feofanov, A.V., Bocharova, O.V., Latypov, R.F., Chernyak, B.V., Arseniev, A.S., Kirpichnikov, M.P., Proapoptotic activity of cytochrome c in living cells: Effect of K72 substitutions and species differences (2008) Mol. Cell. Biochem., 314, pp. 85-93
  • Feng, J.J., Murgida, D.H., Kuhlmann, U., Utesch, T., Mroginski, M.A., Hildebrandt, P., Weidinger, I.M., Gated electron transfer of yeast iso-1 cytochrome c on self-assembled monolayercoated electrodes (2008) J. Phys. Chem. B, 112, pp. 15202-15211
  • Levinthal, C., Are there pathways for protein folding? (1968) J. Chim. Phys. Phys.-Chim. Biol., 65, pp. 44-45
  • Sali, A., Shakhnovich, E., Karplus, M., How does a protein fold? (1994) Nature, 369, pp. 248-251
  • Bryngelson, J.D., Onuchic, J.N., Socci, N.D., Wolynes, P.G., Funnels, pathways, and the energy landscape of protein folding: A synthesis (1995) Proteins: Struct., Funct., Genet., 21, pp. 167-195
  • Dill, K.A., Chan, H.S., From Levinthal to pathways to funnels (1997) Nat. Struct. Mol. Biol., 4, pp. 10-19
  • Baldwin, R.L., The nature of protein folding pathways: The classical versus the new view (1995) J. Biomol. NMR, 5, pp. 103-109
  • Oliveberg, M., Wolynes, P.G., The experimental survey of protein-folding energy landscapes (2005) Q. Rev. Biophys., 38, pp. 245-288
  • Plotkin, S.S., Onuchic, J.N., Understanding protein folding with energy landscape theory Part I: Basic concepts (2002) Q. Rev. Biophys., 35, pp. 111-167
  • Plotkin, S.S., Onuchic, J.N., Understanding protein folding with energy landscape theory Part II: Quantitative aspects (2002) Q. Rev. Biophys., 35, pp. 205-286
  • Sagle, L.B., Zimmermann, J., Dawson, P.E., Romesberg, F.E., Direct and high resolution characterization of cytochrome c equilibrium folding (2006) J. Am. Chem. Soc., 128, pp. 14232-14233
  • Rahaman, H., Khan, M., Hassan, M., Islam, A., Moosavi-Movahedi, A.A., Ahmad, F., Heterogeneity of equilibrium molten globule state of cytochrome c induced by weak salt denaturants under physiological condition (2015) PLoS One, 10, p. e0120465
  • Nakamura, S., Seki, Y., Katoh, E., Kidokoro, S.I., Thermodynamic and structural properties of the acid molten globule state of horse cytochrome c (2011) Biochemistry, 50, pp. 3116-3126
  • Nakamura, S., Kidokoro, S.I., Volumetric properties of the molten globule state of cytochrome c in the thermal three-state transition evaluated by pressure perturbation calorimetry (2012) J. Phys. Chem. B, 116, pp. 1927-1932
  • Kidokoro, S.I., Nakamura, S., IATC, DSC, and PPC analysis of reversible and multistate structural transition of cytochrome c (2016) Methods Enzymol., 567, pp. 391-412
  • Parui, P.P., Deshpande, M.S., Nagao, S., Kamikubo, H., Komori, H., Higuchi, Y., Kataoka, M., Hirota, S., Formation of oligomeric cytochrome c during folding by intermolecular hydro phobic interaction between N-and C-terminal ?-helices (2013) Biochemistry, 52, pp. 8732-8744
  • Haldar, S., Mitra, S., Chattopadhyay, K., Role of protein stabilizers on the conformation of the unfolded state of cytochrome c and its early folding kinetics: Investigation at single molecular resolution (2010) J. Biol. Chem., 285, pp. 25314-25323
  • Khan, M., Rahaman, H., Ahmad, F., Conformation and thermodynamic stability of pre-molten and molten globule states of mammalian cytochromes-c (2011) Metallomics, 3, pp. 327-338
  • Chen, E., Goldbeck, R.A., Kliger, D.S., Probing early events in ferrous cytochrome c folding with time-resolved natural and magnetic circular dichroism spectroscopies (2009) Curr. Protein Pept. Sci., 10, pp. 464-475
  • Goldbeck, R.A., Chen, E., Kliger, D.S., Early events, kinetic intermediates and the mechanism of protein folding in cytochrome c (2009) Int. J. Mol. Sci., 10, pp. 1476-1499
  • Kim, J.E., Pribisko, M.A., Gray, H.B., Winkler, J.R., Zincporphyrin solvation in folded and unfolded states of Zn-cytochrome c (2004) Inorg. Chem., 43, pp. 7953-7960
  • Bren, K.L., Kellogg, J.A., Kaur, R., Wen, X., Folding, conformational changes, and dynamics of cytochromes c probed by NMR spectroscopy (2004) Inorg. Chem., 43, pp. 7934-7944
  • Winkler, J.R., Cytochrome c folding dynamics (2004) Curr. Opin. Chem. Biol., 8, pp. 169-174
  • Englander, S.W., Protein folding intermediates and pathways studied by hydrogen exchange (2000) Annu. Rev. Biophys. Biomol. Struct., 29, pp. 213-238
  • Bai, Y., Sosnick, T.R., Mayne, L., Englander, S.W., Protein folding intermediates: Native-state hydrogen exchange (1995) Science, 269, pp. 192-197
  • Hoang, L., Bedard, S., Krishna, M.M.G., Lin, Y., Englander, S.W., Cytochrome c folding pathway: Kinetic native-state hydrogen exchange (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 12173-12178
  • Krishna, M.M.G., Lin, Y., Rumbley, J.N., Walter Englander, S., Cooperative omega loops in cytochrome c: Role in folding and function (2003) J. Mol. Biol., 331, pp. 29-36
  • Maity, H., Maity, M., Walter Englander, S., How cytochrome c folds, and why: Submolecular foldon units and their stepwise sequential stabilization (2004) J. Mol. Biol., 343, pp. 223-233
  • Maity, H., Maity, M., Krishna, M.M.G., Mayne, L., Englander, S.W., Protein folding: The stepwise assembly of foldon units (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 4741-4746
  • Krishna, M.M.G., Maity, H., Rumbley, J.N., Lin, Y., Englander, S.W., Order of steps in the cytochrome c folding pathway: Evidence for a sequential stabilization mechanism (2006) J. Mol. Biol., 359, pp. 1410-1419
  • Krishna, M.M.G., Maity, H., Rumbley, J.N., Englander, S.W., Branching in the sequential folding pathway of cytochrome c (2007) Protein Sci., 16, pp. 1946-1956
  • Cardenas, A.E., Elber, R., Kinetics of cytochrome C folding: Atomically detailed simulations (2003) Proteins: Struct., Funct., Genet., 51, pp. 245-257
  • Weinkam, P., Zong, C., Wolynes, P.G., A funneled energy landscape for cytochrome c directly predicts the sequential folding route inferred from hydrogen exchange experiments (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 12401-12406
  • Maity, H., Rumbley, J.N., Englander, S.W., Functional role of a protein foldon-An ?-loop foldon controls the alkaline transition in ferricytochrome c (2006) Proteins: Struct., Funct., Genet., 63, pp. 349-355
  • Travaglini-Allocatelli, C., Gianni, S., Brunori, M., A common folding mechanism in the cytochrome c family (2004) Trends Biochem. Sci., 29, pp. 535-541
  • Theorell, H., Åkesson, A., Studies on cytochrome c III. Titration curves (1941) J. Am. Chem. Soc., 63, pp. 58-60
  • Brautigan, D.L., Feinberg, B.A., Hoffman, B.M., Margoliash, E., Preisach, J., Blumberg, W.E., Multiple low spin forms of the cytochrome c ferrihemochrome EPR spectra of various eukaryotic and prokariotic cytochromes c (1977) J. Biol. Chem., 252, pp. 574-582
  • Gadsby, P.M., Peterson, J., Foote, N., Greenwood, C., Thomson, A.J., Identification of the ligand-exchange process in the alkaline transition of horse heart cytochrome c (1987) Biochem. J., 246, pp. 43-54
  • Dopner, S., Hildebrandt, P., Resell, F.I., Mauk, A.G., Alkaline conformational transitions of ferricytochrome c studied by resonance Raman spectroscopy (1998) J. Am. Chem. Soc., 120, pp. 11246-11255
  • Weinkam, P., Zimmermann, J., Sagle, L.B., Matsuda, S., Dawson, P.E., Wolynes, P.G., Romesberg, F.E., Characterization of alkaline transitions in ferricytochrome C using carbon-deuterium infrared probes (2008) Biochemistry, 47, pp. 13470-13480
  • Morishima, I., Ogawa, S., Yonezawa, T., Iizuka, T., Nuclear magnetic resonance studies of hemoproteins pH dependent features of horse heart ferric cytochrome c (1977) Biochim. Biophys. Acta, Protein Struct., 495, pp. 287-298
  • Chin, J.K., Jimenez, R., Romesberg, F.E., Protein dynamics and cytochrome c: Correlations between ligand vibrations and redox activity (2002) J. Am. Chem. Soc., 124, pp. 1846-1847
  • Kroll, T., Hadt, R.G., Wilson, S.A., Lundberg, M., Yan, J.J., Weng, T.C., Sokaras, D., Upton, M.H., Resonant inelastic X-ray scattering on ferrous and ferric bisimidazole porphyrin and cytochrome c: Nature and role of the axial methionine-Fe bond (2014) J. Am. Chem. Soc., 136, pp. 18087-18099
  • Mara, M.W., Hadt, R.G., Reinhard, M.E., Kroll, T., Lim, H., Hartsock, R.W., Alonso-Mori, R., Nelson, S., Metalloprotein entatic control of ligand-metal bonds quantified by ultrafast x-ray spectroscopy (2017) Science, 356, pp. 1276-1280
  • Smith, H.T., Millett, F., Involvement of lysines-72 and-79 in the alkaline isomerization of horse heart ferricytochrome c (1980) Biochemistry, 19, pp. 1117-1120
  • Pollock, W.B., Rosell, F.I., Twitchett, M.B., Dumont, M.E., Mauk, A.G., Bacterial expression of a mitochondrial cytochrome c Trimethylation of lys72 in yeast iso-1-cytochrome c and the alkaline conformational transition (1998) Biochemistry, 2960, pp. 6124-6131
  • Ferrer, J.C., Guillemette, J.G., Bogumil, R., Inglis, S.C., Smith, M., Mauk, A.G., Identification of Lys79 as an iron ligand in one form of alkaline yeast iso-1-ferricytochrome c (1993) J. Am. Chem. Soc., 115, pp. 7507-7508
  • Rosell, F.I., Ferrer, J.C., Mauk, A.G., Proton-linked protein conformational switching: Definition of the alkaline conformational transition of yeast iso-1-ferricytochrome c (1998) J. Am. Chem. Soc., 120, pp. 11234-11245
  • Delange, R.J., Glazer, A.N., Emil, L., Identification and location of ?-N-trimethyllysine in yeast cytochromes c (1970) J. Biol. Chem., 245, pp. 3325-3327
  • Kostrzewa, A., Li, T., Froncisz, W., Marsh, D., Membrane location of spin-labeled cytochrome c determined by paramagnetic relaxation agents (2000) Biochemistry, 39, pp. 6066-6074
  • McClelland, L.J., Seagraves, S.M., Khan, M.K.A., Cherney, M.M., Bandi, S., Culbertson, J.E., Bowler, B.E., The response of ? Loop D dynamics to truncation of trimethyllysine 72 of yeast iso-1-cytochrome c depends on the nature of loop deformation (2015) JBIC, J. Biol. Inorg. Chem., 20, pp. 805-819
  • Battistuzzi, G., Borsari, M., De Rienzo, F., Di Rocco, G., Ranieri, A., Sola, M., Free energy of transition for the individual alkaline conformers of yeast iso-1-cytochrome c (2007) Biochemistry, 46, pp. 1694-1702
  • Blouin, C., Guillemette, J.G., Wallace, C.J., Resolving the individual components of a pH-induced conformational change (2001) Biophys. J., 81, pp. 2331-2338
  • Battistuzzi, G., Borsari, M., Ranieri, A., Sola, M., Conservation of the free energy change of the alkaline isomerization in mitochondrial and bacterial cytochromes c (2002) Arch. Biochem. Biophys., 404, pp. 227-233
  • Battistuzzi, G., Borsari, M., Loschi, L., Martinelli, A., Sola, M., Thermodynamics of the alkaline transition of cytochrome c (1999) Biochemistry, 38, pp. 7900-7907
  • Assfalg, M., Bertini, I., Dolfi, A., Turano, P., Mauk, A.G., Rosell, F.I., Gray, H.B., Structural model for an alkaline form of ferricytochrome c (2003) J. Am. Chem. Soc., 125, pp. 2913-2922
  • Davis, L., Schejter, A., Hess, G., Alkaline isomerization of oxidized cytochrome c equilibrium and kinetic measurements (1974) J. Biol. Chem., 249, pp. 2624-2633
  • Martinez, R.E., Bowler, B.E., Proton-mediated dynamics of the alkaline conformational transition of yeast iso-1-cytochrome c (2004) J. Am. Chem. Soc., 126, pp. 6751-6758
  • Bandi, S., Bowler, B.E., Probing the dynamics of a His73-heme alkaline transition in a destabilized variant of yeast iso-1-cytochrome c with conformationally gated electron transfer methods (2011) Biochemistry, 50, pp. 10027-10040
  • Uno, T., Nishimura, Y., Tsuboi, M., Time-resolved resonance raman study of alkaline isomerization of ferricytochrome c (1984) Biochemistry, 23, pp. 6802-6808
  • Kihara, H., Saigo, S., Nakatani, H., Hiromi, K., Ikeda-Saito, M., Iizuka, T., Kinetic study of isomerization of ferricytochrome c at alkaline pH (1976) Biochim. Biophys. Acta, Bioenerg., 430, pp. 225-243
  • Hasumi, H., Kinetic studies on isomerization of ferricytochrome c in alkaline and acid pH ranges by the circular dichroism stopped-flow method (1980) Biochim. Biophys. Acta, Protein Struct., 626, pp. 265-276
  • Nelson, C.J., Bowler, B.E., PH dependence of formation of a partially unfolded state of a Lys 73-His variant of iso-1-cytochrome c: Implications for the alkaline conformational transition of cytochrome c (2000) Biochemistry, 39, pp. 13584-13594
  • Baddam, S., Bowler, B.E., Thermodynamics and kinetics of formation of the alkaline state of a Lys 79-Ala/Lys 73-His variant of iso-1-cytochrome c (2005) Biochemistry, 44, pp. 14956-14968
  • Tonge, P.J., Moore, G.R., Wharton, C.W.W., Fouriertransform infrared studies of the alkaline isomerization of mitochondrial cytochrome c and the ionization of carboxylic acids (1989) Biochem. J., 258, pp. 599-605
  • Silkstone, G.G., Cooper, C.E., Svistunenko, D., Wilson, M.T., EPR and optical spectroscopic studies of Met80X mutants of yeast ferricytochrome c models for intermediates in the alkaline transition (2005) J. Am. Chem. Soc., 127, pp. 92-99
  • Ness, S.R.S., Lo, T.P., Mauk, A.G., Structural models for the alkaline conformers of yeast iso-1-ferricytochrome c (2000) Isr. J. Chem., 40, pp. 21-25
  • Pearce, L.L., Gartner, A.L., Smith, M., Mauk, A.G., Mutation-induced perturbation of the cytochrome c alkaline transition (1989) Biochemistry, 28, pp. 3152-3156
  • Bandi, S., Bowler, B.E., Effect of an Ala81His mutation on the Met80 loop dynamics of iso-1-cytochrome c (2015) Biochemistry, 54, pp. 1729-1742
  • Ying, T., Zhong, F., Xie, J., Feng, Y., Wang, Z.H., Huang, Z.X., Tan, X., Evolutionary alkaline transition in human cytochrome c (2009) J. Bioenerg. Biomembr., 41, pp. 251-257
  • McClelland, L.J., Bowler, B.E., Lower protein stability does not necessarily increase local dynamics (2016) Biochemistry, 55, pp. 2681-2693
  • Kristinsson, R., Bowler, B.E., Communication of stabilizing energy between substructures of a protein (2005) Biochemistry, 44, pp. 2349-2359
  • Baddam, S., Bowler, B.E., Mutation of asparagine 52 to glycine promotes the alkaline form of iso-1-cytochrome c and causes loss of cooperativity in acid unfolding (2006) Biochemistry, 45, pp. 4611-4619
  • Caroppi, P., Sinibaldi, F., Santoni, E., Howes, B.D., Fiorucci, L., Ferri, T., Ascoli, F., Santucci, R., The 40s ?-loop plays a critical role in the stability and the alkaline conformational transition of cytochrome c (2004) JBIC, J. Biol. Inorg. Chem., 9, pp. 997-1006
  • Verbaro, D., Hagarman, A., Soffer, J., Schweitzer-Stenner, R., The pH dependence of the 695 nm charge transfer band reveals the population of an intermediate state of the alkaline transition of ferricytochrome c at low ion concentrations (2009) Biochemistry, 48, pp. 2990-2996
  • Hagarman, A., Duitch, L., Schweitzer-Stenner, R., The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy (2008) Biochemistry, 47, pp. 9667-9677
  • Schweitzer-Stenner, R., Cytochrome c: A multifunctional protein combining conformational rigidity with flexibility (2014) New J. Sci., 2014, p. 484538
  • Millo, D., Bonifacio, A., Ranieri, A., Borsari, M., Gooijer, C., Van Der Zwan, G., PH-induced changes in adsorbed cytochrome c Voltammetric and surface-enhanced resonance Raman characterization performed simultaneously at chemically modified silver electrodes (2007) Langmuir, 23, pp. 9898-9904
  • Battistuzzi, G., Borsari, M., Sola, M., Francia, F., Redox thermodynamics of the native and alkaline forms of eukaryortic and bacterial class i cytochromes c (1997) Biochemistry, 36, pp. 16247-16258
  • Diederix, R.E., Ubbink, M., Canters, G.W., Peroxidase activity as a tool for studying the folding of c-type cytochromes (2002) Biochemistry, 41, pp. 13067-13077
  • Josephs, T.M., Liptak, M.D., Hughes, G., Lo, A., Smith, R.M., Wilbanks, S.M., Bren, K.L., Ledgerwood, E.C., Conformational change and human cytochrome c function: Mutation of residue 41 modulates caspase activation and destabilizes Met-80 coordination (2013) JBIC, J. Biol. Inorg. Chem., 18, pp. 289-297
  • Josephs, T.M., Morison, I.M., Day, C.L., Wilbanks, S.M., Ledgerwood, E.C., Enhancing the peroxidase activity of cytochrome c by mutation of residue 41: Implications for the peroxidase mechanism and cytochrome c release (2014) Biochem. J., 458, pp. 259-265
  • Lee, I., Salomon, A.R., Yu, K., Doan, J.W., Grossman, L.I., Huttemann, M., New prospects for an old enzyme: Mammalian cytoclirome c is tyrosine-phosphorylated in vivo (2006) Biochemistry, 45, pp. 9121-9128
  • Yu, H., Lee, I., Salomon, A.R., Yu, K., Huttemann, M., Mammalian liver cytochrome c is tyrosine-48 phosphorylated in vivo, inhibiting mitochondrial respiration (2008) Biochim. Biophys. Acta, Bioenerg., 1777, pp. 1066-1071
  • Guerra-Castellano, A., Diaz-Quintana, A., Moreno-Beltran, B., Lopez-Prados, J., Nieto, P.M., Meister, W., Staffa, J., De La Rosa, M.A., Mimicking tyrosine phosphorylation in human cytochrome c by the evolved trna synthetase technique (2015) Chem.-Eur. J., 21, pp. 15004-15012
  • Moreno-Beltran, B., Guerra-Castellano, A., Diaz-Quintana, A., Del Conte, R., Garcia-Maurino, S.M., Diaz-Moreno, S., Gonzalez-Arzola, K., De La Rosa, M.A., Structural basis of mitochondrial dysfunction in response to cytochrome c phosphorylation at tyrosine 48 (2017) Proc. Natl. Acad. Sci. U. S. A., 114, pp. E3041-E3050
  • Rajagopal, B., Edzuma, A., Hough, M., Blundell, K., Kagan, V., Kapralov, A., Fraser, L., Wilson, M., The hydrogen-peroxide-induced radical behaviour in human cytochrome cphospholipid complexes: Implications for the enhanced pro-apoptotic activity of the G41S mutant (2013) Biochem. J., 456, pp. 441-452
  • Karsisiotis, A.I., Deacon, O.M., Wilson, M.T., Macdonald, C., Blumenschein, T.M.A., Moore, G.R., Worrall, J.A.R., Increased dynamics in the 40-57 ?-loop of the G41S variant of human cytochrome c promote its pro-apoptotic conformation (2016) Sci. Rep., 6, p. 30447
  • Gu, J., Shin, D.W., Pletneva, E.V., Remote perturbations in tertiary contacts trigger ligation of lysine to the heme iron in cytochrome c (2017) Biochemistry, 56, pp. 2950-2966
  • Goto, Y., Takahashi, N., Fink, A.L., Mechanism of acid-induced folding of proteins (1990) Biochemistry, 29, pp. 3480-3488
  • Goto, Y., Hagihara, Y., Hamada, D., Hoshino, M., Nishii, I., Acid-induced unfolding and refolding transitions of cytochrome c: A three-state mechanism in H2O and D2O (1993) Biochemistry, 32, pp. 11878-11885
  • Goto, Y., Nishikiori, S., Role of electrostatic repulsion in the acidic molten globule of cytochrome c (1991) J. Mol. Biol., 222, pp. 679-686
  • Jeng, M.F., Englander, S.W., Stable submolecular folding units in a non-compact form of cytochrome c (1991) J. Mol. Biol., 221, pp. 1045-1061
  • Babul, J., Stellwagen, E., Participation of the protein ligands in the folding of cytochrome c (1972) Biochemistry, 11, pp. 1195-1200
  • Robinson, J.B., Strottmann, J.M., Stellwagen, E., A globular high spin form of ferricytochrome c (1983) J. Biol. Chem., 258, pp. 6772-6776
  • Sinibaldi, F., Piro, M.C., Howes, B.D., Smulevich, G., Ascoli, F., Santucci, R., Rupture of the hydrogen bond linking two ?-loops induces the molten globule state at neutral pH in cytochrome c (2003) Biochemistry, 42, pp. 7604-7610
  • Sinibaldi, F., Howes, B.D., Smulevich, G., Ciaccio, C., Coletta, M., Santucci, R., Anion concentration modulates the conformation and stability of the molten globule of cytochrome c (2003) JBIC, J. Biol. Inorg. Chem., 8, pp. 663-670
  • Pletneva, E.V., Gray, H.B., Winkler, J.R., Nature of the cytochrome c molten globule (2005) J. Am. Chem. Soc., 127, pp. 15370-15371
  • Jeng, M.F., Englander, S.W., Elove, G., Wand, A.J., Roder, H., Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR (1990) Biochemistry, 29, pp. 10433-10437
  • Potekhin, S., Pfeil, W., Microcalorimetric studies of conformational transitions of ferricytochrome-c in acidic solution (1989) Biophys. Chem., 34, pp. 55-62
  • Ohgushi, M., Wada, A., 'Molten-globule state': A compact form of globular proteins with mobile side-chains (1983) FEBS Lett., 164, pp. 21-24
  • Cinelli, S., Spinozzi, F., Itri, R., Finet, S., Carsughi, F., Onori, G., Mariani, P., Structural characterization of the pH-denatured states of ferricytochrome-c by synchrotron small angle X-ray scattering (2001) Biophys. J., 81, pp. 3522-3533
  • Boffi, F., Bonincontro, A., Cinelli, S., Congiu Castellano, A., De Francesco, A., Della Longa, S., Girasole, M., Onori, G., PHdependent local structure of ferricytochrome c studied by X-Ray absorption spectroscopy (2001) Biophys. J., 80, pp. 1473-1479
  • Rietveld, A., Sijens, P., Verkleij, A.J., Kruijff, B.D., Interaction of cytochrome c and its precursor apocytochrome c with various phospholipids (1983) EMBO J., 2, pp. 907-913
  • Hildebrandt, P., Stockburger, M., Cytochrome c at charged interfaces 2. Complexes with negatively charged macromolecular systems studied by resonance Raman spectroscopy (1989) Biochemistry, 28, pp. 6722-6728
  • Heimburg, T., Hildebrandt, P., Marsh, D., Cytochrome c-lipid interactions studied by resonance raman and phosphorus-31 nmr spectroscopy correlation between the conformational changes of the protein and the lipid bilayer (1991) Biochemistry, 30, pp. 9084-9089
  • Liu, X., Kim, C.N., Yang, J., Jemmerson, R., Wang, X., Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c (1996) Cell, 86, pp. 147-157
  • Jemmerson, R., Liu, J., Hausauer, D., Lam, K.P., Mondino, A., Nelson, R.D., A conformational change in cytochrome c of apoptotic and necrotic cells is detected by monoclonal antibody binding and mimicked by association of the native antigen with synthetic phospholipid vesicles (1999) Biochemistry, 38, pp. 3599-3609
  • Radi, R., Turrens, J.F., Freeman, B.A., Cytochrome c-catalyzed membrane lipid peroxidation by hydrogen peroxide (1991) Arch. Biochem. Biophys., 288, pp. 118-125
  • Weber, C., Michel, B., Bosshard, H.R., Spectroscopic analysis of the cytochrome c oxidase-cytochrome c complex: Circular dichroism and magnetic circular dichroism measurements reveal change of cytochrome c heme geometry imposed by complex formation (1987) Proc. Natl. Acad. Sci. U. S. A., 84, pp. 6687-6691
  • Hildebrandt, P., Vanhecke, F., Buse, G., Soulimane, T., Mauk, A.G., Resonance Raman study of the interactions between cytochrome c variants and cytochrome c oxidase (1993) Biochemistry, 32, pp. 10912-10922
  • Hildebrandt, P., Heimburg, T., Marsh, D., Powell, G.L., Conformational changes in cytochrome c and cytochrome oxidase upon complex formation: A resonance Raman study (1990) Biochemistry, 29, pp. 1661-1668
  • Dopner, S., Hildebrandt, P., Rosell, F.I., Mauk, A.G., Von Walter, M., Buse, G., Soulimane, T., The structural and functional role of lysine residues in the binding domain of cytochrome c in the electron transfer to cytochrome c oxidase (1999) Eur. J. Biochem., 261, pp. 379-391
  • McClelland, L.J., Steele, H.B.B., Whitby, F.G., Mou, T.C., Holley, D., Ross, J.B.A., Sprang, S.R., Bowler, B.E., Cytochrome c can form a well-defined binding pocket for hydrocarbons (2016) J. Am. Chem. Soc., 138, pp. 16770-16778
  • Oellerich, S., Lecomte, S., Paternostre, M., Heimburg, T., Hildebrandt, P., Peripheral and integral binding of cytochrome c to phospholipids vesicles (2004) J. Phys. Chem. B, 108, pp. 3871-3878
  • Tuominen, E.K.J., Wallace, C.J.A., Kinnunen, P.K.J., Phospholipid-Cytochrome c Interaction: Evidence for the extended lipid anchorage (2002) J. Biol. Chem., 277, pp. 8822-8826
  • Sanghera, N., Pinheiro, T.J.T., Unfolding and refolding of cytochrome c driven by the interaction with lipid micelles (2000) Protein Sci., 9, pp. 1194-1202
  • Chevance, S., Le Rumeur, E., De Certaines, J.D., Simonneaux, G., Bondon, A., 1H nmr structural characterization of the cytochrome c modifications in a micellar environment (2003) Biochemistry, 42, pp. 15342-15351
  • Varhac, R., Antalik, M., Bano, M., Effect of temperature and guanidine hydrochloride on ferrocytochrome c at neutral pH (2004) JBIC, J. Biol. Inorg. Chem., 9, pp. 12-22
  • Li, J., Sun, R., Hao, C., He, G., Zhang, L., Wang, J., The behavior of the adsorption of cytochrome C on lipid monolayers: A study by the Langmuir-Blodgett technique and theoretical analysis (2015) Biophys. Chem., 205, pp. 33-40
  • Nguyen, K.T., An electronically enhanced chiral sum frequency generation vibrational spectroscopy study of lipid-bound cytochrome c (2015) Chem. Commun., 51, pp. 195-197
  • Mohn, E.S., Lee, J.M., Beaver, C., Tobbe, G., McCarthy, S.M., Oneil, E., Smith, B.D., Breen, J.J., Interactions of cytochrome c with n-acylated phosphatidylethanolamine lipids (2014) J. Phys. Chem. A, 118, pp. 8287-8292
  • Pataraia, S., Liu, Y., Lipowsky, R., Dimova, R., Effect of cytochrome c on the phase behavior of charged multicomponent lipid membranes (2014) Biochim. Biophys. Acta, Biomembr., 1838, pp. 2036-2045
  • Zlatanov, I., Popova, A., Penetration of lysozyme and cytochrome c in lipid bilayer: Fluorescent Study (2011) J. Membr. Biol., 242, pp. 95-103
  • El Kirat, K., Morandat, S., Cytochrome c interaction with neutral lipid membranes: Influence of lipid packing and protein charges (2009) Chem. Phys. Lipids, 162, pp. 17-24
  • Morandat, S., El Kirat, K., Cytochrome c provokes the weakening of zwitterionic membranes as measured by force spectroscopy (2011) Colloids Surf., B, 82, pp. 111-117
  • Kim, H., Degenaar, P., Kim, Y., Insertion of a cytochrome c protein into a complex lipid monolayer under an electric field (2009) J. Phys. Chem. C, 113, pp. 14377-14380
  • Gorbenko, G.P., Trusova, V.M., Molotkovsky, J.G., Kinnunen, P.K.J., Cytochrome c induces lipid demixing in weakly charged phosphatidylcholine/phosphatidylglycerol model membranes as evidenced by resonance energy transfer (2009) Biochim. Biophys. Acta, Biomembr., 1788, pp. 1358-1365
  • Zucchi, M.R., Nascimento, O.R., Faljoni-Alario, A., Prieto, T., Nantes, I.L., Modulation of cytochrome c spin states by lipid acyl chains: A continuous-wave electron paramagnetic resonance (CWEPR) study of haem iron (2003) Biochem. J., 370, pp. 671-678
  • Kawai, C., Prado, F.M., Nunes, G.L.C., Di Mascio, P., Carmona-Ribeiro, A.M., Nantes, I.L., PH-dependent interaction of cytochrome c with mitochondrial mimetic membranes: The role of an array of positively charged amino acids (2005) J. Biol. Chem., 280, pp. 34709-34717
  • Choi, E.J., Dimitriadis, E.K., Cytochrome c adsorption to supported, anionic lipid bilayers studied via atomic force microscopy (2004) Biophys. J., 87, pp. 3234-3241
  • Tuominen, E.K.J., Zhu, K., Wallace, C.J.A., Clark-Lewis, I., Craig, D.B., Rytomaa, M., Kinnunen, P.K.J., ATP induces a conformational change in lipid-bound cytochrome c (2001) J. Biol. Chem., 276, pp. 19356-19362
  • Pinheiro, T.J.T., Cheng, H., Seeholzer, S.H., Roder, H., Direct evidence for the cooperative unfolding of cytochrome c in lipid membranes from H-2H exchange kinetics (2000) J. Mol. Biol., 303, pp. 617-626
  • Murgida, D.H., Hildebrandt, P., Heterogeneous electron transfer of cytochrome c on coated silver electrodes electric field effects on structure and redox potential (2001) J. Phys. Chem. B, 105, pp. 1578-1586
  • Wackerbarth, H., Hildebrandt, P., Redox and conformational equilibria and dynamics of cytochrome c at high electric fields (2003) ChemPhysChem, 4, pp. 714-724
  • De Biase, P.M., Doctorovich, F., Murgida, D.H., Estrin, D.A., Electric field effects on the reactivity of heme model systems (2007) Chem. Phys. Lett., 434, pp. 121-126
  • De Biase, P.M., Paggi, D.A., Doctorovich, F., Hildebrandt, P., Estrin, D.A., Murgida, D.H., Marti, M.A., Molecular basis for the electric field modulation of cytochrome c structure and function (2009) J. Am. Chem. Soc., 131, pp. 16248-16256
  • Alvarez-Paggi, D., Martin, D.F., Kranich, A., Hildebrandt, P., Marti, M.A., Murgida, D.H., Computer simulation and SERR detection of cytochrome c dynamics at SAM-coated electrodes (2009) Electrochim. Acta, 54, pp. 4963-4970
  • Wisitruangsakul, N., Zebger, I., Ly, K.H., Murgida, D.H., Ekgasit, S., Hildebrandt, P., Redox-linked protein dynamics of cytochrome c probed by time-resolved surface enhanced infrared absorption spectroscopy (2008) Phys. Chem. Chem. Phys., 10, pp. 5276-5286
  • Ataka, K., Heberle, J., Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface-modified electrodes (2004) J. Am. Chem. Soc., 126, pp. 9445-9457
  • Jiang, X., Ataka, K., Heberle, J., Influence of the molecular structure of carboxyl-terminated self-assembled monolayer on the electron transfer of cytochrome c adsorbed on an Au electrode: In situ observation by surface-enhanced infrared absorption spectroscopy (2008) J. Phys. Chem. C, 112, pp. 813-819
  • Rivas, L., Murgida, D.H., Hildebrandt, P., Conformational and redox equilibria and dynamics of cytochrome c immobilized on electrodes via hydrophobic interactions (2002) J. Phys. Chem. B, 106, pp. 4823-4830
  • Heimburg, T., Marsh, D., Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes (1995) Biophys. J., 68, pp. 536-546
  • Gorbenko, G.P., Domanov, Y.A., Cytochrome c location in phosphatidylcholine/cardiolipin model membranes: Resonance energy transfer study (2003) Biophys. Chem., 103, pp. 239-249
  • Rytomaa, M., Mustonen, P., Kinnunen, P.K., Reversible, nonionic, and pH-dependent association of cytochrome c with cardiolipin-phosphatidylcholine liposomes (1992) J. Biol. Chem., 267, pp. 22243-22248
  • Muenzner, J., Pletneva, E.V., Structural transformations of cytochrome c upon interaction with cardiolipin (2014) Chem. Phys. Lipids, 179, pp. 57-63
  • O'Brien, E.S., Nucci, N.V., Fuglestad, B., Tommos, C., Wand, A.J., Defining the apoptotic trigger: The interaction of cytochrome c and cardiolipin (2015) J. Biol. Chem., 290, pp. 30879-30887
  • Sinibaldi, F., Howes, B.D., Droghetti, E., Polticelli, F., Piro, M.C., Di Pierro, D., Fiorucci, L., Santucci, R., Role of lysines in cytochrome c-cardiolipin interaction (2013) Biochemistry, 52, pp. 4578-4588
  • Sinibaldi, F., Droghetti, E., Polticelli, F., Piro, M.C., Di Pierro, D., Ferri, T., Smulevich, G., Santucci, R., The effects of ATP and sodium chloride on the cytochrome c-cardiolipin interaction: The contrasting behavior of the horse heart and yeast proteins (2011) J. Inorg. Biochem., 105, pp. 1365-1372
  • Hanske, J., Toffey, J.R., Morenz, A.M., Bonilla, A.J., Schiavoni, K.H., Pletneva, E.V., Conformational properties of cardiolipin-bound cytochrome c (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 125-130
  • Frauenfelder, H., Sligar, S.G., Wolynes, P.G., The energy landscapes and motions of proteins (1991) Science, 254, pp. 1598-1603
  • Liang, Z.X., Nocek, J.M., Huang, K., Hayes, R.T., Kurnikov, I.V., Beratan, D.N., Hoffman, B.M., Dynamic docking and electron transfer between zn-myoglobin and cytochrome b5 (2002) J. Am. Chem. Soc., 124, pp. 6849-6859
  • Conte, L.L., Chothia, C., Janin, J., The atomic structure of protein-protein recognition sites1 (1999) J. Mol. Biol., 285, pp. 2177-2198
  • Volkov, A.N., Van Nuland, N.A.J., Electron transfer interactome of cytochrome c (2012) PLoS Comput. Biol., 8, p. e1002807
  • Gray, H.B., Winkler, J.R., Electron flow through metalloproteins (2010) Biochim. Biophys. Acta, Bioenerg., 1797, pp. 1563-1572
  • Pelletier, H., Kraut, J., Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c (1992) Science, 258, pp. 1748-1755
  • Volkov, A.N., Nicholls, P., Worrall, J.A., The complex of cytochrome c and cytochrome c peroxidase: The end of the road? (2011) Biochim. Biophys. Acta, Bioenerg., 1807, pp. 1482-1503
  • Poulos, T.L., Thirty years of heme peroxidase structural biology (2010) Arch. Biochem. Biophys., 500, pp. 3-12
  • Volkov, A.N., Worrall, J.A., Holtzmann, E., Ubbink, M., Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR (2006) Proc. Natl. Acad. Sci. U. S. A., 103, pp. 18945-18950
  • Leesch, V.W., Bujons, J., Mauk, A.G., Hoffman, B.M., Cytochrome c peroxidase-cytochrome c complex: Locating the second binding domain on cytochrome c peroxidase with site-directed mutagenesis (2000) Biochemistry, 39, pp. 10132-10139
  • Volkov, A.N., Bashir, Q., Worrall, J.A.R., Ubbink, M., Binding hot spot in the weak protein complex of physiological redox partners yeast cytochrome c and cytochrome c peroxidase (2009) J. Mol. Biol., 385, pp. 1003-1013
  • Volkov, A.N., Ubbink, M., Van Nuland, N.A., Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy (2010) J. Biomol. NMR, 48, pp. 225-236
  • Volkov, A.N., Structure and function of transient encounters of redox proteins (2015) Acc. Chem. Res., 48, pp. 3036-3043
  • Nocek, J.M., Zhou, J.S., De Forest, S., Priyadarshy, S., Beratan, D.N., Onuchic, J.N., Hoffman, B.M., Theory and practice of electron transfer within protein-protein complexes: Application to the multidomain binding of cytochrome c by cytochrome c peroxidase (1996) Chem. Rev., 96, pp. 2459-2490
  • Van De Water, K., Sterckx, Y.G.J., Volkov, A.N., The lowaffinity complex of cytochrome c and its peroxidase (2015) Nat. Commun., 6, p. 7073
  • Erman, J.E., Vitello, L.B., Yeast cytochrome c peroxidase: Mechanistic studies via protein engineering (2002) Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1597, pp. 193-220
  • Northrup, S.H., Boles, J.O., Reynolds, J.C., Brownian dynamics of cytochrome c and cytochrome c peroxidase association (1988) Science, 241, pp. 67-70
  • Bashir, Q., Volkov, A.N., Ullmann, G.M., Ubbink, M., Visualization of the encounter ensemble of the transient electron transfer complex of cytochrome c and cytochrome c peroxidase (2009) J. Am. Chem. Soc., 132, pp. 241-247
  • Adam, G., Delbruck, M., Reduction of dimensionality in biological diffusion processes (1968) Structural Chemistry and Molecular Biology, pp. 198-215. , Rich, A., Davidson, N., Eds.; Freeman: San Francisco, CA
  • Trumpower, B.L., Cytochrome bc1 complexes of microorganisms (1990) Microbiol. Rev., 54, pp. 101-129
  • Trumpower, B.L., Gennis, R.B., Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: The enzymology of coupling electron transfer reactions to transmembrane proton translocation (1994) Annu. Rev. Biochem., 63, pp. 675-716
  • Trumpower, B.L., The protonmotive Q cycle Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex (1990) J. Biol. Chem., 265, pp. 11409-11412
  • Speck, S.H., Ferguson-Miller, S., Osheroff, N., Margoliash, E., Definition of cytochrome c binding domains by chemical modification: Kinetics of reaction with beef mitochondrial reductase and functional organization of the respiratory chain (1979) Proc. Natl. Acad. Sci. U. S. A., 76, pp. 155-159
  • Smith, H.T., Ahmed, A., Millett, F., Electrostatic interaction of cytochrome c with cytochrome c1 and cytochrome oxidase (1981) J. Biol. Chem., 256, pp. 4984-4990
  • Ahmed, A.J., Smith, H.T., Smith, M.B., Millett, F.S., Effect of specific lysine modification on the reduction of cytochrome c by succinate-cytochrome c reductase (1978) Biochemistry, 17, pp. 2479-2483
  • Konig, B.W., Osheroff, N., Wilms, J., Muijsers, A.O., Dekker, H.L., Margoliash, E., Mapping of the interaction domain for purified cytochrome c 1 on cytochrome c (1980) FEBS Lett., 111, pp. 395-398
  • Rieder, R., Bosshard, H.R., Comparison of the binding sites on cytochrome c for cytochrome c oxidase, cytochrome bc1, and cytochrome c1 Differential acetylation of lysyl residues in free and complexed cytochrome c (1980) J. Biol. Chem., 255, pp. 4732-4739
  • Lange, C., Hunte, C., Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 2800-2805
  • Solmaz, S.R.N., Hunte, C., Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer (2008) J. Biol. Chem., 283, pp. 17542-17549
  • Hunte, C., Solmaz, S., Lange, C., Electron transfer between yeast cytochrome bc 1 complex and cytochrome c: A structural analysis (2002) Biochim. Biophys. Acta, Bioenerg., 1555, pp. 21-28
  • Nyola, A., Hunte, C., A structural analysis of the transient interaction between the cytochrome bc 1 complex and its substrate cytochrome c (2008) Biochem. Soc. Trans., 36, pp. 981-985
  • Sarewicz, M., Borek, A., Daldal, F., Froncisz, W., Osyczka, A., Demonstration of short-lived complexes of cytochrome c with cytochrome bc1 by EPR spectroscopy: Implications for the mechanism of interprotein electron transfer (2008) J. Biol. Chem., 283, pp. 24826-24836
  • Hackenbrock, C.R., Chazotte, B., Gupte, S.S., The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport (1986) J. Bioenerg. Biomembr., 18, pp. 331-368
  • Gupte, S., Wu, E.S., Hoechli, L., Hoechli, M., Jacobson, K., Sowers, A.E., Hackenbrock, C.R., Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components (1984) Proc. Natl. Acad. Sci. U. S. A., 81, pp. 2606-2610
  • Bogan, A.A., Thorn, K.S., Anatomy of hot spots in protein interfaces (1998) J. Mol. Biol., 280, pp. 1-9
  • Wenz, T., Covian, R., Hellwig, P., MacMillan, F., Meunier, B., Trumpower, B.L., Hunte, C., Mutational analysis of cytochrome b at the ubiquinol oxidation site of yeast complex III (2007) J. Biol. Chem., 282, pp. 3977-3988
  • Kokhan, O., Wraight, C.A., Tajkhorshid, E., The binding interface of cytochrome c and cytochrome c1 in the bc1 complex: Rationalizing the role of key residues (2010) Biophys. J., 99, pp. 2647-2656
  • Singharoy, A., Barragan, A.M., Thangapandian, S., Tajkhorshid, E., Schulten, K., Binding site recognition and docking dynamics of a single electron transport protein: Cytochrome c2 (2016) J. Am. Chem. Soc., 138, pp. 12077-12089
  • Moser, C.C., Dutton, P.L., Cytochrome c and c2 binding dynamics and electron transfer with photosynthetic reaction center protein and other integral membrane redox proteins (1988) Biochemistry, 27, pp. 2450-2461
  • Moreno-Beltran, B., Diaz-Quintana, A., Gonzalez-Arzola, K., Velazquez-Campoy, A., De La Rosa, M.A., Diaz-Moreno, I., Cytochrome c1 exhibits two binding sites for cytochrome c in plants (2014) Biochim. Biophys. Acta, Bioenerg., 1837, pp. 1717-1729
  • Moreno-Beltran, B., Diaz-Moreno, I., Gonzalez-Arzola, K., Guerra-Castellano, A., Velazquez-Campoy, A., De La Rosa, M.A., Diaz-Quintana, A., Respiratory complexes III and IV can each bind two molecules of cytochrome c at low ionic strength (2015) FEBS Lett., 589, pp. 476-483
  • Yoshikawa, S., Shimada, A., Reaction mechanism of cytochrome c oxidase (2015) Chem. Rev., 115, pp. 1936-1989
  • Ramirez, B.E., Malmstrom, B.G., Winkler, J.R., Gray, H.B., The currents of life: The terminal electron-transfer complex of respiration (1995) Proc. Natl. Acad. Sci. U. S. A., 92, pp. 11949-11951
  • Smith, H.T., Staudenmayer, N., Millett, F., Use of specific lysine modifications to locate the reaction site of cytochrome c with cytochrome oxidase (1977) Biochemistry, 16, pp. 4971-4974
  • Ferguson-Miller, S., Brautigan, D.L., Margoliash, E., Definition of cytochrome c binding domains by chemical modification III Kinetics of reaction of carboxydinitrophenyl cytochromes c with cytochrome c oxidase (1978) J. Biol. Chem., 253, pp. 149-159
  • Millett, F., Darley-Usmar, V., Capaldi, R.A., Cytochrome c is crosslinked to subunit II of cytochrome c oxidase by a water-soluble carbodiimide (1982) Biochemistry, 21, pp. 3857-3862
  • Millett, F., De Jong, C., Paulson, L., Capaldi, R.A., Identification of specific carboxylate groups on cytochrome c oxidase that are involved in binding cytochrome c (1983) Biochemistry, 22, pp. 546-552
  • Taha, T.S., Ferguson-Miller, S., Interaction of cytochrome c with cytochrome c oxidase studied by monoclonal antibodies and a protein modifying reagent (1992) Biochemistry, 31, pp. 9090-9097
  • Shimada, S., Shinzawa-Itoh, K., Baba, J., Aoe, S., Shimada, A., Yamashita, E., Kang, J., Tsukihara, T., Complex structure of cytochrome c-cytochrome c oxidase reveals a novel protein-protein interaction mode (2017) EMBO J., 36, p. e201695021
  • Richter, O.M., Ludwig, B., Cytochrome c oxidase: Structure, function, and physiology of a redox-driven molecular machine (2003) Reviews of Physiology, Biochemistry and Pharmacology, pp. 47-74. , Springer-Verlag: Berlin Heidelberg
  • Maneg, O., Malatesta, F., Ludwig, B., Drosou, V., Interaction of cytochrome c with cytochrome oxidase: Two different docking scenarios (2004) Biochim. Biophys. Acta, Bioenerg., 1655, pp. 274-281
  • Witt, H., Malatesta, F., Nicoletti, F., Brunori, M., Ludwig, B., Cytochrome c binding site on cytochrome oxidase in Paracoccus denitrificans (1998) Eur. J. Biochem., 251, pp. 367-373
  • Witt, H., Malatesta, F., Nicoletti, F., Brunori, M., Ludwig, B., Tryptophan 121 of subunit II is the electron entry site to cytochromec oxidase in paracoccus denitrificans: Involvement of a hydrophobic patch in the docking reaction (1998) J. Biol. Chem., 273, pp. 5132-5136
  • Bertini, I., Cavallaro, G., Rosato, A., A structural model for the adduct between cytochrome c and cytochrome c oxidase (2005) JBIC, J. Biol. Inorg. Chem., 10, pp. 613-624
  • Lyubenova, S., Siddiqui, M.K., De Vries, P.M.J.M., Ludwig, B., Prisner, T.F., Protein-protein interactions studied by epr relaxation measurements: Cytochrome c and cytochrome c oxidase (2007) J. Phys. Chem. B, 111, pp. 3839-3846
  • Michel, B., Proudfoot, A.E., Wallace, C.J., Bosshard, H.R., The cytochrome c oxidase-cytochrome c complex: Spectroscopic analysis of conformational changes in the protein-protein interaction domain (1989) Biochemistry, 28, pp. 456-462
  • Spaar, A., Flock, D., Helms, V., Association of cytochrome c with membrane-bound cytochrome c oxidase proceeds parallel to the membrane rather than in bulk solution (2009) Biophys. J., 96, pp. 1721-1732
  • Gupte, S.S., Hackenbrock, C.R., Multidimensional diffusion modes and collision frequencies of cytochrome c with its redox partners (1988) J. Biol. Chem., 263, pp. 5241-5247
  • Kuhlbrandt, W., Structure and function of mitochondrial membrane protein complexes (2015) BMC Biol., 13, p. 89
  • Schagger, H., Pfeiffer, K., Supercomplexes in the respiratory chains of yeast and mammalian mitochondria (2000) EMBO J., 19, p. 1777
  • Wittig, I., Schagger, H., Features and applications of blue-native and clear-native electrophoresis (2008) Proteomics, 8, pp. 3974-3990
  • Bultema, J.B., Braun, H.P., Boekema, E.J., Kouril, R., Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato (2009) Biochim. Biophys. Acta, Bioenerg., 1787, pp. 60-67
  • Greggio, C., Jha, P., Kulkarni, S.S., Lagarrigue, S., Broskey, N.T., Boutant, M., Wang, X., Auwerx, J., Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle (2017) Cell Metab., 25, pp. 301-311
  • Guerrero-Castillo, S., Baertling, F., Kownatzki, D., Wessels, H.J., Arnold, S., Brandt, U., Nijtmans, L., The assembly pathway of mitochondrial respiratory chain complex i (2017) Cell Metab., 25, pp. 128-139
  • Rieger, B., Shalaeva, D.N., Sohnel, A.C., Kohl, W., Duwe, P., Mulkidjanian, A.Y., Busch, K.B., Lifetime imaging of GFP at CoxVIIIa reports respiratory supercomplex assembly in live cells (2017) Sci. Rep., 7, p. 46055
  • Cogliati, S., Calvo, E., Loureiro, M., Guaras, A.M., Nieto-Arellano, R., Garcia-Poyatos, C., Ezkurdia, I., Enriquez, J.A., Mechanism of super-assembly of respiratory complexes III and IV (2016) Nature, 539, pp. 579-582
  • Stroud, D.A., Surgenor, E.E., Formosa, L.E., Reljic, B., Frazier, A.E., Dibley, M.G., Osellame, L.D., Thorburn, D.R., Accessory subunits are integral for assembly and function of human mitochondrial complex i (2016) Nature, 538, pp. 123-126
  • Lundin, C.R., Von Ballmoos, C., Ott, M., Adelroth, P., Brzezinski, P., Regulatory role of the respiratory supercomplex factors in Saccharomyces cerevisiae (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. E4476-E4485
  • Lapuente-Brun, E., Moreno-Loshuertos, R., Acin-Perez, R., Latorre-Pellicer, A., Colas, C., Balsa, E., Perales-Clemente, E., Enriquez, J.A., Supercomplex assembly determines electron flux in the mitochondrial electron transport chain (2013) Science, 340, pp. 1567-1570
  • Milenkovic, D., Blaza, J.N., Larsson, N.G., Hirst, J., The enigma of the respiratory chain supercomplex (2017) Cell Metab., 25, pp. 765-776
  • Berrisford, J.M., Baradaran, R., Sazanov, L.A., Structure of bacterial respiratory complex i (2016) Biochim. Biophys. Acta, Bioenerg., 1857, pp. 892-901
  • Schagger, H., Pfeiffer, K., The ratio of oxidative phosphorylation complexes v in bovine heart mitochondria and the composition of respiratory chain supercomplexes (2001) J. Biol. Chem., 276, pp. 37861-37867
  • Mileykovskaya, E., Penczek, P.A., Fang, J., Mallampalli, V.K.P.S., Sparagna, G.C., Dowhan, W., Arrangement of the respiratory chain complexes in saccharomyces cerevisiae supercomplex III2IV2 revealed by single particle cryo-electron microscopy (2012) J. Biol. Chem., 287, pp. 23095-23103
  • Eubel, H., Jansch, L., Braun, H.P., New insights into the respiratory chain of plant mitochondria supercomplexes and a unique composition of complex II (2003) Plant Physiol., 133, pp. 274-286
  • Melo, A.M.P., Teixeira, M., Supramolecular organization of bacterial aerobic respiratory chains: From cells and back (2016) Biochim. Biophys. Acta, Bioenerg., 1857, pp. 190-197
  • Acin-Perez, R., Enriquez, J.A., The function of the respiratory supercomplexes: The plasticity model (2014) Biochim. Biophys. Acta, Bioenerg., 1837, pp. 444-450
  • Lenaz, G., Tioli, G., Falasca, A.I., Genova, M.L., Complex i function in mitochondrial supercomplexes (2016) Biochim. Biophys. Acta, Bioenerg., 1857, pp. 991-1000
  • Enriquez, J.A., Supramolecular organization of respiratory complexes (2016) Annu. Rev. Physiol., 78, pp. 533-561
  • Moreno-Loshuertos, R., Enriquez, J.A., Respiratory supercomplexes and the functional segmentation of the CoQ pool (2016) Free Radical Biol. Med., 100, pp. 5-13
  • Acin-Perez, R., Fernandez-Silva, P., Peleato, M.L., Perez-Martos, A., Enriquez, J.A., Respiratory active mitochondrial supercomplexes (2008) Mol. Cell, 32, pp. 529-539
  • Winge, D.R., Sealing the mitochondrial respirasome (2012) Mol. Cell. Biol., 32, pp. 2647-2652
  • Genova, M.L., Lenaz, G., Functional role of mitochondrial respiratory supercomplexes (2014) Biochim. Biophys. Acta, Bioenerg., 1837, pp. 427-443
  • Schafer, E., Dencher, N.A., Vonck, J., Parcej, D.N., Threedimensional structure of the respiratory chain supercomplex I1III2IV1 from bovine heart mitochondria (2007) Biochemistry, 46, pp. 12579-12585
  • Dudkina, N.V., Kudryashev, M., Stahlberg, H., Boekema, E.J., Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography (2011) Proc. Natl. Acad. Sci. U. S. A., 108, pp. 15196-15200
  • Althoff, T., Mills, D.J., Popot, J.-L., Kuhlbrandt, W., Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1 (2011) EMBO J., 30, pp. 4652-4664
  • Gu, J., Wu, M., Guo, R., Yan, K., Lei, J., Gao, N., Yang, M., The architecture of the mammalian respirasome (2016) Nature, 537, pp. 639-643
  • Letts, J.A., Fiedorczuk, K., Sazanov, L.A., The architecture of respiratory supercomplexes (2016) Nature, 537, pp. 644-648
  • Sousa, J.S., Mills, D.J., Vonck, J., Kuhlbrandt, W., Functional asymmetry and electron flow in the bovine respirasome (2016) ELife, 5, p. e21290
  • Wu, M., Gu, J., Guo, R., Huang, Y., Yang, M., Structure of mammalian respiratory supercomplex I1III2IV1 (2016) Cell, 167, pp. 1598-1609
  • Genova, M.L., Lenaz, G., A critical appraisal of the role of respiratory supercomplexes in mitochondria (2013) Biol. Chem., 394, pp. 631-639
  • Vartak, R., Porras, C.A.M., Bai, Y., Respiratory supercomplexes: Structure, function and assembly (2013) Protein Cell, 4, pp. 582-590
  • Guo, R., Zong, S., Wu, M., Gu, J., Yang, M., Architecture of human mitochondrial respiratory megacomplex I2III2IV2 (2017) Cell, 170, pp. 1247-1257
  • Moore, G.R., Pettigrew, G.W., Rogers, N.K., Factors influencing redox potentials of electron transfer proteins (1986) Proc. Natl. Acad. Sci. U. S. A., 83, pp. 4998-4999
  • Tezcan, F.A., Winkler, J.R., Gray, H.B., Effects of ligation and folding on reduction potentials of heme proteins (1998) J. Am. Chem. Soc., 120, pp. 13383-13388
  • Allen, J.W.A., Barker, P.D., Daltrop, O., Stevens, J.M., Tomlinson, E.J., Sinha, N., Sambongi, Y., Ferguson, S.J., Why isn't 'standard' heme good enough for c-type and d1-type cytochromes? (2005) Dalton Trans., pp. 3410-3418
  • Zhuang, J., Amoroso, J.H., Kinloch, R., Dawson, J.H., Baldwin, M.J., Gibney, B.R., Evaluation of electron-withdrawing group effects on heme binding in designed proteins: Implications for heme a in cytochrome c oxidase (2006) Inorg. Chem., 45, pp. 4685-4694
  • Gray, H.B., Winkler, J.R., Electron tunneling through proteins (1999) Q. Rev. Biophys., 36, pp. 341-372
  • Zheng, Z., Gunner, M.R., Analysis of the electrochemistry of hemes with Ems spanning 800 mV (2009) Proteins: Struct., Funct., Genet., 75, pp. 719-734
  • Tomlinson, E.J., Ferguson, S.J., Conversion of a c type cytochrome to a b type that spontaneously forms in vitro from apo protein and heme: Implications for c type cytochrome biogenesis and folding (2000) Proc. Natl. Acad. Sci. U. S. A., 97, pp. 5156-5160
  • Barker, P.D., Ferrer, J.C., Mylrajan, M., Loehr, T.M., Feng, R., Konishi, Y., Funk, W.D., Mauk, A.G., Transmutation of a heme protein (1993) Proc. Natl. Acad. Sci. U. S. A., 90, pp. 6542-6546
  • Shifman, J.M., Gibney, B.R., Sharp, R.E., Dutton, P.L., Heme redox potential control in de novo designed four a helix bundle proteins (2000) Biochemistry, 39, pp. 14813-14821
  • Michel, L.V., Ye, T., Bowman, S.E.J., Levin, B.D., Hahn, M.A., Russell, B.S., Elliott, S.J., Bren, K.L., Heme attachment motif mobility tunes cytochrome c redox potential (2007) Biochemistry, 46, pp. 11753-11760
  • Can, M., Zoppellaro, G., Andersson, K.K., Bren, K.L., Modulation of ligand-field parameters by heme ruffling in cytochromes c revealed by EPR spectroscopy (2011) Inorg. Chem., 50, pp. 12018-12024
  • Jentzen, W., Song, X., Shelnutt, J.A., Structural characterization of synthetic and protein-bound porphyrins in terms of the lowestfrequency normal coordinates of the macrocycle (1997) J. Phys. Chem. B, 101, pp. 1684-1699
  • Karunakaran, V., Sun, Y., Enabbas, A., Champion, P.M., Investigations of the low frequency modes of ferric cytochrome c using vibrational coherence spectroscopy (2014) J. Phys. Chem. B, 118, pp. 6062-6070
  • Hobbs, J.D., Shelnutt, J.A., Conserved nonplanar heme distortions in cytochromesc (1995) J. Protein Chem., 14, pp. 19-25
  • Rosell, F.I., Mauk, A.G., Spectroscopic properties of a mitochondrial cytochrome C with a single thioether bond to the heme prosthetic group (2002) Biochemistry, 41, pp. 7811-7818
  • Olea, C., Kuriyan, J., Marletta, M.A., Modulating heme redox potential through protein-induced porphyrin distortion (2010) J. Am. Chem. Soc., 132, pp. 12794-12795
  • Grinstaff, M.W., Hill, M.G., Birnbaum, E.R., Schaefer, W.P., Labinger, J.A., Gray, H.B., Structures, electronic properties, and oxidation-reduction reactivity of halogenated iron porphyrins (1995) Inorg. Chem., 34, pp. 4896-4902
  • Viola, F., Aime, S., Coletta, M., Desideri, A., Fasano, M., Paoletti, S., Tarricone, C., Ascenzi, P., Azide, cyanide, fluoride, imidazole and pyridine binding to ferric and ferrous native horse heart cytochrome c and to its carboxymethylated derivative: A comparative study (1996) J. Inorg. Biochem., 62, pp. 213-222
  • Schejter, A., Ryan, M.D., Blizzard, E.R., Zhang, C., Margoliash, E., Feinberg, B.A., The redox couple of the cytochrome c cyanide complex: The contribution of heme iron ligation to the structural stability, chemical reactivity, and physiological behavior of horse cytochrome c (2006) Protein Sci., 15, pp. 234-241
  • Liu, G., Shao, W., Zhu, S., Tang, W., Effects of axial ligand replacement on the redox potential of cytochrome c (1995) J. Inorg. Biochem., 60, pp. 123-131
  • Banci, L., Bertini, I., Liu, G., Lu, J., Reddig, T., Tang, W., Wu, Y., Zhu, D., Effects of extrinsic imidazole ligation on the molecular and electronic structure of cytochrome c (2001) JBIC, J. Biol. Inorg. Chem., 6, pp. 628-637
  • Raphael, A.L., Gray, H.B., Axial ligand replacement in horse heart cytochrome c by semisynthesis (1989) Proteins: Struct., Funct., Genet., 6, pp. 338-340
  • Casalini, S., Battistuzzi, G., Borsari, M., Bortolotti, C.A., Ranieri, A., Sola, M., Electron transfer and electrocatalytic properties of the immobilized Methionine80Alanine cytochrome c variant (2008) J. Phys. Chem. B, 112, pp. 1555-1563
  • Ferri, T., Poscia, A., Ascoli, F., Santucci, R., Direct electrochemical evidence for an equilibrium intermediate in the guanidine-induced unfolding of cytochrome c (1996) Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1298, pp. 102-108
  • Ye, T., Kaur, R., Senguen, F.T., Michel, L.V., Bren, K.L., Elliott, S.J., Methionine ligand lability of type i cytochromes c: Detection of ligand loss using protein film voltammetry (2008) J. Am. Chem. Soc., 130, pp. 6682-6683
  • Levin, B.D., Can, M., Bowman, S.E.J., Bren, K.L., Elliott, S.J., Methionine ligand lability in bacterial monoheme cytochromes c: An electrochemical study (2011) J. Phys. Chem. B, 115, pp. 11718-11726
  • Bowman, S.E.J., Bren, K.L., Variation and analysis of secondsphere interactions and axial histidinate character in c-type cytochromes (2010) Inorg. Chem., 49, pp. 7890-7897
  • Lett, C.M., Berghuis, A.M., Frey, H.E., Lepock, J.R., Guillemette, J.G., The role of a conserved water molecule in the redoxdependent thermal stability of iso-1-cytochrome c (1996) J. Biol. Chem., 271, pp. 29088-29093
  • Blouin, C., Wallace, C.J.A., Protein matrix and dielectric effect in cytochromec (2001) J. Biol. Chem., 276, pp. 28814-28818
  • Schweitzer-Stenner, R., Internal electric field in cytochrome c explored by visible electronic circular dichroism spectroscopy (2008) J. Phys. Chem. B, 112, pp. 10358-10366
  • Casalini, S., Battistuzzi, G., Borsari, M., Bortolotti, C.A., Di Rocco, G., Ranieri, A., Sola, M., Electron transfer properties and hydrogen peroxide electrocatalysis of cytochrome c variants at positions 67 and 80 (2010) J. Phys. Chem. B, 114, pp. 1698-1706
  • Moore, G., Pettigrew, G.W., (2012) Cytochromes C: Evolutionary, Structural and Physicochemical Aspects, , Springer-Verlag: Berlin Heidelberg
  • Battistuzzi, G., Loschi, L., Borsari, M., Sola, M., Effects of nonspecific ion-protein interactions on the redox chemistry of cytochrome c (1999) JBIC, J. Biol. Inorg. Chem., 4, pp. 601-607
  • Lee, B., Graziano, G., A two-state model of hydrophobic hydration that produces compensating enthalpy and entropy changes (1996) J. Am. Chem. Soc., 118, pp. 5163-5168
  • Blokzijl, W., Engberts, J.B.F.N., Hydrophobic effects opinions and facts (1993) Angew. Chem., Int. Ed. Engl., 32, pp. 1545-1579
  • Battistuzzi, G., Borsari, M., Sola, M., Medium and temperature effects on the redox chemistry of cytochrome c (2001) Eur. J. Inorg. Chem., 2001, pp. 2989-3004
  • Battistuzzi, G., Borsari, M., Bortolotti, C.A., Di Rocco, G., Ranieri, A., Sola, M., Effects of mutational (Lys to Ala) Surface charge changes on the redox properties of electrode-immobilized cytochrome c (2007) J. Phys. Chem. B, 111, pp. 10281-10287
  • Lange, C., Luque, I., Hervas, M., Ruiz-Sanz, J., Mateo, P.L., De La Rosa, M.A., Role of the surface charges D72 and K8 in the function and structural stability of the cytochrome-c from Nostoc sp (2005) PCC-7119 FEBS J., 272, pp. 3317-3327
  • Tai, H., Mikami, S.I., Irie, K., Watanabe, N., Shinohara, N., Yamamoto, Y., Role of a highly conserved electrostatic interaction on the surface of cytochrome c in control of the redox function (2010) Biochemistry, 49, pp. 42-48
  • Aviram, I., Myer, Y.P., Schejter, A., Stepwise modification of the electrostatic charge of cytochrome c Effects on protein conformation and oxidation-reduction properties (1981) J. Biol. Chem., 256, pp. 5540-5544
  • Blouin, C., Guillemette, J.G., Wallace, C.J., Probing electrostatic interactions in cytochrome c using site-directed chemical modification (2002) Biochem. Cell Biol., 80, pp. 197-203
  • Alvarez-Paggi, D., Meister, W., Kuhlmann, U., Weidinger, I., Tenger, K., Zimanyi, L., Rakhely, G., Murgida, D.H., Disentangling electron tunneling and protein dynamics of cytochrome c through a rationally designed surface mutation (2013) J. Phys. Chem. B, 117, pp. 6061-6068
  • Battistuzzi, G., Borsari, M., Dallari, D., Lancellotti, I., Sola, M., Anion binding to mitochondrial cytochromes c studied through electrochemistry (1996) Eur. J. Biochem., 241, pp. 208-214
  • Caffrey, M.S., Cusanovich, M.A., The effects of surface charges on the redox potential of cytochrome c2 from the purple phototrophic bacterium Rhodobacter capsulatus (1991) Arch. Biochem. Biophys., 285, pp. 227-230
  • Petrovic, J., Clark, R.A., Yue, H., Waldeck, D.H., Bowden, E.F., Impact of surface immobilization and solution ionic strength on the formal potential of immobilized cytochrome c (2005) Langmuir, 21, pp. 6308-6316
  • Khoa Ly, H., Wisitruangsakul, N., Sezer, M., Feng, J.J., Kranich, A., Weidinger, I.M., Zebger, I., Hildebrandt, P., Electric-field effects on the interfacial electron transfer and protein dynamics of cytochrome c (2011) J. Electroanal. Chem., 660, pp. 367-376
  • Yue, H., Khoshtariya, D., Waldeck, D.H., Grochol, J., Hildebrandt, P., Murgida, D.H., On the electron transfer mechanism between cytochrome c and metal electrodes (2006) Evidence for Dynamic Control at Short Distances. J. Phys. Chem. B, 110, pp. 19906-19913
  • Kranich, A., Naumann, H., Molina-Heredia, F.P., Moore, H.J., Lee, T.R., Lecomte, S., De La Rosa, M.A., Murgida, D.H., Gated electron transfer of cytochrome c6 at biomimetic interfaces: A time-resolved SERR study (2009) Phys. Chem. Chem. Phys., 11, pp. 7390-7397
  • Molinas, M.F., Benavides, L., Castro, M.A., Murgida, D.H., Stability, redox parameters and electrocatalytic activity of a cytochrome domain from a new subfamily (2015) Bioelectrochemistry, 105, pp. 25-33
  • Molinas, M.F., De Candia, A., Szajnman, S.H., Rodriguez, J.B., Marti, M., Pereira, M., Teixeira, M., Murgida, D.H., Electron transfer dynamics of Rhodothermus marinus caa 3 cytochrome c domains on biomimetic films (2011) Phys. Chem. Chem. Phys., 13, pp. 18088-18098
  • Todorovic, S., Jung, C., Hildebrandt, P., Murgida, D.H., Conformational transitions and redox potential shifts of cytochrome P450 induced by immobilization (2006) JBIC, J. Biol. Inorg. Chem., 11, pp. 119-127
  • Capdevila, D.A., Marmisolle, W.A., Williams, F.J., Murgida, D.H., Phosphate mediated adsorption and electron transfer of cytochrome c A time-resolved SERR spectroelectrochemical study (2013) Phys. Chem. Chem. Phys., 15, pp. 5386-5394
  • Chen, X., Ferrigno, R., Yang, J., Whitesides, G.M., Redox properties of cytochrome c adsorbed on self-assembled monolayers: A probe for protein conformation and orientation (2002) Langmuir, 18, pp. 7009-7015
  • Zuo, P., Albrecht, T., Barker, P.D., Murgida, D.H., Hildebrandt, P., Interfacial redox processes of cytochrome b562 (2009) Phys. Chem. Chem. Phys., 11, pp. 7430-7436
  • Mauk, A.G., Moore, G.R., Control of metalloprotein redox potentials: What does site-directed mutagenesis of hemoproteins tell us? (1997) JBIC, J. Biol. Inorg. Chem., 2, pp. 119-125
  • Sivakolundu, S.G., Mabrouk, P.A., Cytochrome c structure and redox function in mixed solvents are determined by the dielectric constant (2000) J. Am. Chem. Soc., 122, pp. 1513-1521
  • Fantuzzi, A., Sadeghi, S., Valetti, F., Rossi, G.L., Gilardi, G., Tuning the reduction potential of engineered cytochrome c-553 (2002) Biochemistry, 41, pp. 8718-8724
  • Bortolotti, C.A., Amadei, A., Aschi, M., Borsari, M., Corni, S., Sola, M., Daidone, I., The reversible opening of water channels in cytochrome c modulates the heme iron reduction potential (2012) J. Am. Chem. Soc., 134, pp. 13670-13678
  • Marcus, R.A., On the theory of oxidation-reduction reactions involving electron transfer (1956) I. J. Chem. Phys., 24, pp. 966-978
  • Marcus, R.A., Sutin, N., Electron transfers in chemistry and biology (1985) Biochim. Biophys. Acta, Rev. Bioenerg., 811, pp. 265-322
  • Gray, H.B., Winkler, J.R., Electron transfer in proteins (1996) Annu. Rev. Biochem., 65, pp. 537-561
  • Blankman, J.I., Shahzad, N., Dangi, B., Miller, C.J., Guiles, R.D., Voltammetric probes of cytochrome electroreactivity: The effect of the protein matrix on outer-sphere reorganization energy and electronic coupling probed through comparisons with the behavior of porphyrin complexes (2000) Biochemistry, 39, pp. 14799-14805
  • Shafiey, H., Ghourchian, H., Mogharrab, N., How does reorganization energy change upon protein unfolding? Monitoring the structural perturbations in the heme cavity of cytochrome c (2008) Biophys. Chem., 134, pp. 225-231
  • Bortolotti, C.A., Siwko, M.E., Castellini, E., Ranieri, A., Sola, M., Corni, S., The reorganization energy in cytochrome c is controlled by the accessibility of the heme to the solvent (2011) J. Phys. Chem. Lett., 2, pp. 1761-1765
  • Monari, S., Millo, D., Ranieri, A., Di Rocco, G., Van Der Zwan, G., Gooijer, C., Peressini, S., Borsari, M., The impact of urea-induced unfolding on the redox process of immobilised cytochrome c (2010) JBIC, J. Biol. Inorg. Chem., 15, pp. 1233-1242
  • Murgida, D.H., Hildebrandt, P., Electrostatic-field dependent activation energies modulate electron transfer of cytochrome c (2002) J. Phys. Chem. B, 106, pp. 12814-12819
  • Terrettaz, S., Cheng, J., Miller, C.J., Guiles, R.D., Kinetic parameters for cytochrome c via insulated electrode voltammetry (1996) J. Am. Chem. Soc., 118, pp. 7857-7858
  • Tipmanee, V., Oberhofer, H., Park, M., Kim, K.S., Blumberger, J., Prediction of reorganization free energies for biological electron transfer: A comparative study of ru-modified cytochromes and a 4-helix bundle protein (2010) J. Am. Chem. Soc., 132, pp. 17032-17040
  • Roberts, V.A., Pique, M.E., Definition of the interaction domain for cytochrome c on cytochrome c oxidase (1999) J. Biol. Chem., 274, pp. 38051-38060
  • Fedurco, M., Augustynski, J., Indiani, C., Smulevich, G., Antalik, M., Bano, M., Sedlak, E., Dawson, J.H., Electrochemistry of unfolded cytochrome c in neutral and acidic urea solutions (2005) J. Am. Chem. Soc., 127, pp. 7638-7646
  • Nahir, T.M., Clark, R.A., Bowden, E.F., Linear-sweep voltammetry of irreversible electron-transfer in surface-confined species using the marcus theory (1994) Anal. Chem., 66, pp. 2595-2598
  • Song, S., Clark, R.A., Bowden, E.F., Tarlov, M.J., Characterization of cytochrome c alkanethiolate structures prepared by self-assembly on gold (1993) J. Phys. Chem., 97, pp. 6564-6572
  • Takayama, S.J., Irie, K., Tai, H.L., Kawahara, T., Hirota, S., Takabe, T., Alcaraz, L.A., Yamamoto, Y., Electron transfer from cytochrome c to cupredoxins (2009) JBIC, J. Biol. Inorg. Chem., 14, pp. 821-828
  • Ciaccio, C., Tognaccini, L., Battista, T., Cervelli, M., Howes, B.D., Santucci, R., Coletta, M., Fiorucci, L., The Met80Ala and Tyr67His/Met80Ala mutants of human cytochrome c shed light on the reciprocal role of Met80 and Tyr67 in regulating ligand access into the heme pocket (2017) J. Inorg. Biochem., 169, pp. 86-96
  • Seyedi, S.S., Waskasi, M.M., Matyushov, D.V., Theory and electrochemistry of cytochrome c (2017) J. Phys. Chem. B, 121, pp. 4958-4967
  • Winkler, J.R., Gray, H.B., Electron transfer in rutheniummodified proteins (1992) Chem. Rev., 92, pp. 369-379
  • Wuttke, D.S., Winkler, J.R., Eletron-tunneling pathways in cytochrome C (1992) Science, 256, pp. 1007-1009
  • Gu, J., Yang, S., Rajic, A.J., Kurnikov, I.V., Prytkova, T.R., Pletneva, E.V., Control of cytochrome c redox reactivity through offpathway modifications in the protein hydrogen-bonding network (2014) Chem. Commun., 50, pp. 5355-5357
  • Redzic, J.S., Bowler, B.E., Role of hydrogen bond networks and dynamics in positive and negative cooperative stabilization of a protein (2005) Biochemistry, 44, pp. 2900-2908
  • Sun, Y., Karunakaran, V., Champion, P.M., Investigations of the low-frequency spectral density of cytochrome c upon equilibrium unfolding (2013) J. Phys. Chem. B, 117, pp. 9615-9625
  • Berezhna, S., Wohlrab, H., Champion, P.M., Resonance Raman investigations of cytochrome c conformational change upon interaction with the membranes of intact and Ca2+-exposed mitochondria (2003) Biochemistry, 42, pp. 6149-6158
  • Chertkova, R.V., Brazhe, N.A., Bryantseva, T.V., Nekrasov, A.N., Dolgikh, D.A., Yusipovich, A.I., Sosnovtseva, O., Kirpichnikov, M.P., New insight into the mechanism of mitochondrial cytochrome c function (2017) PLoS One, 12, p. e0178280
  • Yeh, P., Kuwana, T., Reversible electrode reaction of cytochrome c (1977) Chem. Lett., 6, pp. 1145-1148
  • Eddowes, M.J., Hill, H.A.O., Novel method for the investigation of the electrochemistry of metalloproteins: Cytochrome c (1977) J. Chem. Soc., Chem. Commun., pp. 771b-772
  • Hervas, M., De La Rosa, M.A., Tollin, G., A comparative laser-flash absorption spectroscopy study of algal plastocyanin and cytochrome c552 photooxidation by photosystem i particles from spinach (1992) Eur. J. Biochem., 203, pp. 115-120
  • Hazzard, J.T., Rong, S.Y., Tollin, G., Ionic strength dependence of the kinetics of electron transfer from bovine mitochondrial cytochrome c to bovine cytochrome c oxidase (1991) Biochemistry, 30, pp. 213-222
  • Ubbink, M., Ejdeback, M., Karlsson, B.G., Bendall, D.S., The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics (1998) Structure, 6, pp. 323-335
  • Crowley, P.B., Ubbink, M., Close encounters of the transient kind: Protein interactions in the photosynthetic redox chain investigated by NMR spectroscopy (2003) Acc. Chem. Res., 36, pp. 723-730
  • Muresanu, L., Pristovsek, P., Lohr, F., Maneg, O., Mukrasch, M.D., Ruterjans, H., Ludwig, B., Lucke, C., The electron transfer complex between cytochrome c552 and the CuA domain of the thermus thermophilus ba3 oxidase (2006) J. Biol. Chem., 281, p. 14503
  • McConnell, H.M., Intramolecular charge transfer in aromatic free radicals (1961) J. Chem. Phys., 35, pp. 508-515
  • Naleway, C.A., Curtiss, L.A., Miller, J.R., Superexchangepathway model for long-distance electronic couplings (1991) J. Phys. Chem., 95, pp. 8434-8437
  • Avila, A., Gregory, B.W., Niki, K., Cotton, T.M., An electrochemical approach to investigate gated electron transfer using a physiological model system: Cytochrome c immobilized on carboxylic acid-terminated alkanethiol self-assembled monolayers on gold electrodes (2000) J. Phys. Chem. B, 104, pp. 2759-2766
  • Chi, Q.J., Zhang, J.D., Andersen, J.E.T., Ulstrup, J., Ordered assembly and controlled electron transfer of the blue copper protein azurin at gold (111) single-crystal substrates (2001) J. Phys. Chem. B, 105, pp. 4669-4679
  • Davis, K.L., Waldeck, D.H., Effect of deuterium substitution on electron transfer at cytochrome c-SAM interfaces (2008) J. Phys. Chem. B, 112, pp. 12498-12507
  • El Kasmi, A., Wallace, J.M., Bowden, E.F., Binet, S.M., Linderman, R.J., Controlling interfacial electron-transfer kinetics of cytochrome c with mixed self-assembled monolayers (1998) J. Am. Chem. Soc., 120, pp. 225-226
  • Murgida, D.H., Hildebrandt, P., Proton-coupled electron transfer of cytochrome c (2001) J. Am. Chem. Soc., 123, pp. 4062-4068
  • Niki, K., Hardy, W.R., Hill, M.G., Li, H., Sprinkle, J.R., Margoliash, E., Fujita, K., Ohno, H., Coupling to lysine-13 promotes electron tunneling through carboxylate-terminated alkanethiol self-assembled monolayers to cytochrome c (2003) J. Phys. Chem. B, 107, pp. 9947-9949
  • Wei, J., Liu, H., Khoshtariya, D.E., Yamamoto, H., Dick, A., Waldeck, D.H., Electron-transfer dynamics of cytochrome c: A change in the reaction mechanism with distance (2002) Angew. Chem., 114, pp. 4894-4897
  • Xu, J.S., Bowden, E.F., Determination of the orientation of adsorbed cytochrome c on carboxyalkanethiol self-assembled monolayers by in situ differential modification (2006) J. Am. Chem. Soc., 128, pp. 6813-6822
  • Fujita, K., Nakamura, N., Ohno, H., Leigh, B.S., Niki, K., Gray, H.B., Richards, J.H., Mimicking protein-protein electron transfer: Voltammetry of pseudomonas aeruginosa azurin and the thermus thermophilus CuA domain at ?-derivatized self-assembledmonolayer gold electrodes (2004) J. Am. Chem. Soc., 126, pp. 13954-13961
  • Kranich, A., Ly, H.K., Hildebrandt, P., Murgida, D.H., Direct observation of the gating step in protein electron transfer: Electricfield-controlled protein dynamics (2008) J. Am. Chem. Soc., 130, pp. 9844-9848
  • Moskovits, M., Suh, J.S., Surface selection rules for surfaceenhanced Raman spectroscopy: Calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver (1984) J. Phys. Chem., 88, pp. 5526-5530
  • Ly, H.K., Marti, M.A., Martin, D.F., Alvarez-Paggi, D., Meister, W., Kranich, A., Weidinger, I.M., Murgida, D.H., Thermal fluctuations determine the electron-transfer rates of cytochrome c in electrostatic and covalent complexes (2010) ChemPhysChem, 11, pp. 1225-1235
  • Koppenol, W.H., Rush, J.D., Mills, J.D., Margoliash, E., The dipole-moment of cytochrome-c (1991) Mol. Biol. Evol., 8, pp. 545-558
  • Clarke, R.J., The dipole potential of phospholipid membranes and methods for its detection (2001) Adv. Colloid Interface Sci., 89, pp. 263-281
  • Smith, C.P., White, H.S., Theory of the interfacial potential distribution and reversible voltammetric response of electrodes coated with electroactive molecular films (1992) Anal. Chem., 64, pp. 2398-2405
  • Onuchic, J.N., Beratan, D.N., Winkler, J.R., Gray, H.B., Pathway analysis of protein electron-transfer reactions (1992) Annu. Rev. Biophys. Biomol. Struct., 21, pp. 349-377
  • Beratan, D.N., Onuchic, J.N., Winkler, J.R., Gray, H.B., Electron-tunneling pathways in proteins (1992) Science, 258, pp. 1740-1741
  • Wang, Y., Wang, H., Chen, Y., Wang, Y., Chen, H.Y., Shan, X., Tao, N., Fast electrochemical and plasmonic detection reveals multitime scale conformational gating of electron transfer in cytochrome c (2017) J. Am. Chem. Soc., 139, pp. 7244-7249
  • Dolidze, T.D., Rondinini, S., Vertova, A., Waldeck, D.H., Khoshtariya, D.E., Impact of self-assembly composition on the alternate interfacial electron transfer for electrostatically immobilized cytochrome (2007) Biopolymers, 87, pp. 68-73
  • Dolidze, T.D., Khoshtariya, D.E., Waldeck, D.H., Macyk, J., Van Eldik, R., Positive activation volume for a cytochrome c electrode process: Evidence for a ?Protein friction? Mechanism from highpressure studies (2003) J. Phys. Chem. B, 107, pp. 7172-7179
  • Davis, K.L., Drews, B.J., Yue, H., Waldeck, D.H., Knorr, K., Clark, R.A., Electron-transfer kinetics of covalently attached cytochrome c/SAM/Au electrode assemblies (2008) J. Phys. Chem. C, 112, pp. 6571-6576
  • Mishra, A.K., Waldeck, D.H., A unified model for the electrochemical rate constant that incorporates solvent dynamics (2009) J. Phys. Chem. C, 113, pp. 17904-17914
  • Khoshtariya, D.E., Dolidze, T.D., Shushanyan, M., Davis, K.L., Waldeck, D.H., Van Eldik, R., Fundamental signatures of short-and long-range electron transfer for the blue copper protein azurin at Au/ SAM junctions (2010) Proc. Natl. Acad. Sci. U. S. A., 107, pp. 2757-2762
  • Khoshtariya, D.E., Dolidze, T.D., Sarauli, D., Van Eldik, R., High pressure probing of a changeover in the charge transfer mechanism for intact cytochrome c at gold/self assembled monolayer junctions (2006) Angew. Chem., Int. Ed., 45, pp. 277-281
  • Khoshtariya, D.E., Dolidze, T.D., Zusman, L.D., Waldeck, D.H., Observation of the turnover between the solvent friction (overdamped) and tunneling (nonadiabatic) charge-transfer mechanisms for a Au/Fe (CN)6 3?/4?Electrode process and evidence for a freezing out of the marcus barrier (2001) J. Phys. Chem. A, 105, pp. 1818-1829
  • Khoshtariya, D.E., Wei, J., Liu, H., Yue, H., Waldeck, D.H., Charge-transfer mechanism for cytochrome c adsorbed on nanometer thick films distinguishing frictional control from conformational gating (2003) J. Am. Chem. Soc., 125, pp. 7704-7714
  • Williams, P.A., Blackburn, N.J., Sanders, D., Bellamy, H., Stura, E.A., Fee, J.A., McRee, D.E., The cua domain of thermus thermophilus ba3-type cytochrome c oxidase at 1.6 å resolution (1999) Nat. Struct. Biol., 6, pp. 509-516
  • Gorelsky, S.I., Xie, X., Chen, Y., James, A., Solomon, E.I., The two-state issue in the mixed-valence binuclear CuA center in cytochrome c oxidase and N2O reductase (2006) J. Am. Chem. Soc., 128, pp. 16452-16453
  • Abriata, L.A., Alvarez-Paggi, D., Ledesma, G.N., Blackburn, N.J., Vila, A.J., Murgida, D.H., Alternative ground states enable pathway switching in biological electron transfer (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 17348-17353
  • Abriata, L.A., Ledesma, G.N., Pierattelli, R., Vila, A.J., Electronic structure of the ground and excited states of the cua site by nmr spectroscopy (2009) J. Am. Chem. Soc., 131, pp. 1939-1946
  • Zitare, U., Alvarez-Paggi, D., Morgada, M.N., Abriata, L.A., Vila, A.J., Murgida, D.H., Reversible switching of redox-active molecular orbitals and electron transfer pathways in cua sites of cytochrome c oxidase (2015) Angew. Chem., 127, pp. 9691-9695
  • Morgada, M.N., Abriata, L.A., Zitare, U., Alvarez-Paggi, D., Murgida, D.H., Vila, A.J., Control of the electronic ground state on an electron-transfer copper site by second-sphere perturbations (2014) Angew. Chem., Int. Ed., 53, pp. 6188-6192
  • Giudici-Orticoni, M.T., Guerlesquin, F., Bruschi, M., Nitschke, W., Interaction-induced redox switch in the electron transfer complex rusticyanin-cytochrome c 4 (1999) J. Biol. Chem., 274, pp. 30365-30369
  • Diaz-Moreno, I., Diaz-Quintana, A., Diaz-Moreno, S., Subias, G., De La Rosa, M.A., Transient binding of plastocyanin to its physiological redox partners modifies the copper site geometry (2006) FEBS Lett., 580, pp. 6187-6194
  • Huttemann, M., Doan, J.W., Goustin, A., Sinkler, C., Mahapatra, G., Shay, J., Liu, J., Lee, I., Regulation of cytochrome c in respiration, apoptosis, neurodegeneration and cancer: The good, the bad and the ugly (2014) Cytochromes B and C: Biochemical Properties, Biological Functions and Electrochemical Analysis, pp. 1-38. , Rurik, T., Ed.; Nova Science Publishing
  • Liu, S.S., Cooperation of a ?Reactive oxygen cycle? With the Q cycle and the proton cycle in the respiratory chain-superoxide generating and cycling mechanisms in mitochondria (1999) J. Bioenerg. Biomembr., 31, pp. 367-376
  • Martinez-Fabregas, J., Diaz-Moreno, I., Gonzalez-Arzola, K., Diaz-Quintana, A., De La Rosa, M.A., A common signalosome for programmed cell death in humans and plants (2014) Cell Death Dis., 5, p. e1314
  • Boehning, D., Patterson, R.L., Sedaghat, L., Glebova, N.O., Kurosaki, T., Snyder, S.H., Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis (2003) Nat. Cell Biol., 5, pp. 1051-1061
  • Boehning, D., Patterson, R.L., Snyder, S.H., Apoptosis and calcium: New roles for cytochrome c and inositol 1,4,5-trisphosphate (2004) Cell Cycle, 3, pp. 250-252
  • Morison, I.M., Cramer Borde, E.M., Cheesman, E.J., Cheong, P.L., Holyoake, A.J., Fichelson, S., Weeks, R.J., Wilbanks, S.M., A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia (2008) Nat. Genet., 40, pp. 387-389
  • Jemmerson, R., Antigenicity and native structure of globular proteins: Low frequency of peptide reactive antibodies (1987) Proc. Natl. Acad. Sci. U. S. A., 84, pp. 9180-9184
  • Spangler, B.D., Binding to native proteins by antipeptide monoclonal antibodies (1991) J. Immunol., 146, pp. 1591-1595
  • Jemmerson, R., Immunological recognition of peptide and protein antigens (1995) Immunological Recognition of Peptides in Medicine and Biology, pp. 213-226. , Zegers, N. D., Boersma, W. J. A., Claassen, E., Eds.; CRC Press: Boca Raton, FL
  • Goshorn, S.C., Retzel, E., Jemmerson, R., Common structural features among monoclonal antibodies binding the same antigenic region of cytochrome c (1991) J. Biol. Chem., 266, pp. 2134-2142
  • Jemmerson, R., Multiple overlapping epitopes in the three antigenic regions of horse cytochrome c1 (1987) J. Immunol., 138, pp. 213-219
  • Jemmerson, R., Margoliash, E., Analysis of a complex antigenic site on horse cytochrome c (1978) Adv. Exp. Med. Biol., 98, pp. 119-129
  • Jemmerson, R., Margoliash, E., Topographic antigenic determinants on cytochrome c Immunoadsorbent separation of the rabbit antibody populations directed against horse cytochrome (1979) J. Biol. Chem., 254, pp. 12706-12716
  • Jemmerson, R., Margoliash, E., Preparation of site-specific anticytochrome c antibodies and their application (1981) Methods Enzymol., 74, pp. 244-262
  • Mamula, M.J., Jemmerson, R., Hardin, J.A., The specificity of human anti-cytochrome c autoantibodies that arise in autoimmune disease (1990) J. Immunol., 144, pp. 1835-1840
  • Osheroff, N., Jemmerson, R., Speck, S.H., Ferguson-Miller, S., Margoliash, E., Site-specific anti-cytochrome c antibodies Inhibition of the reactions between cytochrome c and its respiratory chain electron exchange partners (1979) J. Biol. Chem., 254, pp. 12717-12724
  • Shimonkevitz, R., Colon, S., Kappler, J.W., Marrack, P., Grey, H.M., Antigen recognition by H-2-restricted T cells II. A tryptic ovalbumin peptide that substitutes for processed antigen (1984) J. Immunol., 133, pp. 2067-2074
  • Jemmerson, R., Paterson, Y., Mapping epitopes on a protein antigen by the proteolysis of antigen-antibody complexes (1986) Science, 232, pp. 1001-1004
  • Godoy, L.C., Munoz-Pinedo, C., Castro, L., Cardaci, S., Schonhoff, C.M., King, M., Tortora, V., Jiang, J.F., Disruption of the M80-Fe ligation stimulates the translocation of cytochrome c to the cytoplasm and nucleus in nonapoptotic cells (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 2653-2658
  • Kagan, V.E., Tyurin, V.A., Jiang, J., Tyurina, Y.Y., Ritov, V.B., Amoscato, A.A., Osipov, A.N., Kini, V., Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors (2005) Nat. Chem. Biol., 1, pp. 223-232
  • Chipuk, J.E., Moldoveanu, T., Llambi, F., Parsons, M.J., Green, D.R., The BCL-2 family reunion (2010) Mol. Cell, 37, pp. 299-310
  • Hotchkiss, R.S., Strasser, A., McDunn, J.E., Swanson, P.E., Cell death (2009) N. Engl. J. Med., 361, pp. 1570-1583
  • Youle, R.J., Strasser, A., The BCL-2 protein family: Opposing activities that mediate cell death (2008) Nat. Rev. Mol. Cell Biol., 9, pp. 47-59
  • Neumann, S., El Maadidi, S., Faletti, L., Haun, F., Labib, S., Schejtman, A., Maurer, U., Borner, C., How do viruses control mitochondria-mediated apoptosis? (2015) Virus Res., 209, pp. 45-55
  • Papaianni, E., El Maadidi, S., Schejtman, A., Neumann, S., Maurer, U., Marino-Merlo, F., Mastino, A., Borner, C., Phylogenetically distant viruses use the same BH3-only protein puma to trigger Bax/Bak-dependent apoptosis of infected mouse and human cells (2015) PLoS One, 10, p. e0126645
  • Hayakawa, M., Sugiyama, S., Hattori, K., Takasawa, M., Ozawa, T., Age-associated damage in mitochondrial DNA in human hearts (1993) Mol. Cell. Biochem., 119, pp. 95-103
  • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., Wang, X., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade (1997) Cell, 91, pp. 479-489
  • Leoni, L.M., Chao, Q., Cottam, H.B., Genini, D., Rosenbach, M., Carrera, C.J., Budihardjo, I., Carson, D.A., Induction of an apoptotic program in cell-free extracts by 2-chloro-2?-deoxyadenosine 5?-triphosphate and cytochrome c (1998) Proc. Natl. Acad. Sci. U. S. A., 95, pp. 9567-9571
  • Kuwana, T., Smith, J.J., Muzio, M., Dixit, V., Newmeyer, D.D., Kornbluth, S., Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c (1998) J. Biol. Chem., 273, pp. 16589-16594
  • Brustugun, O.T., Fladmark, K.E., Doskeland, S.O., Orrenius, S., Zhivotovsky, B., Apoptosis induced by microinjection of cytochrome c is caspase-dependent and is inhibited by Bcl-2 (1998) Cell Death Differ., 5, pp. 660-668
  • Zhivotovsky, B., Orrenius, S., Brustugun, O.T., Doskeland, S.O., Injected cytochrome c induces apoptosis (1998) Nature, 391, pp. 449-450
  • Gilmore, K.J., Quinn, H.E., Wilson, M.R., Pinocytic loading of cytochrome c into intact cells specifically induces caspasedependent permeabilization of mitochondria: Evidence for a cytochrome c feedback loop (2001) Cell Death Differ., 8, pp. 631-639
  • Adrain, C., Martin, S.J., The mitochondrial apoptosome: A killer unleashed by the cytochrome seas (2001) Trends Biochem. Sci., 26, pp. 390-397
  • Yuan, S., Akey, C.W., Apoptosome structure, assembly, and procaspase activation (2013) Structure, 21, pp. 501-515
  • Martinez-Fabregas, J., Diaz-Moreno, I., Gonzalez-Arzola, K., Janocha, S., Navarro, J.A., Hervas, M., Bernhardt, R., De La Rosa, M.A., Structural and functional analysis of novel human cytochrome C targets in apoptosis (2014) Mol. Cell. Proteomics, 13, pp. 1439-1456
  • Martinez-Fabregas, J., Diaz-Moreno, I., Gonzalez-Arzola, K., Janocha, S., Navarro, J.A., Hervas, M., Bernhardt, R., De La Rosa, M.A., New Arabidopsis thaliana cytochrome c partners: A look into the elusive role of cytochrome c in programmed cell death in plants (2013) Mol. Cell. Proteomics, 12, pp. 3666-3676
  • Oberst, A., Bender, C., Green, D.R., Living with death: The evolution of the mitochondrial pathway of apoptosis in animals (2008) Cell Death Differ., 15, pp. 1139-1146
  • Conradt, B., Horvitz, H.R., The Celegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9 (1998) Cell, 93, pp. 519-529
  • Del Peso, L., Gonzalez, V.M., Nunez, G., Caenorhabditis elegans EGL-1 disrupts the interaction of CED-9 with CED-4 and promotes CED-3 activation (1998) J. Biol. Chem., 273, pp. 33495-33500
  • Seshagiri, S., Miller, L.K., Caenorhabditis elegans CED-4 stimulates CED-3 processing and CED-3-induced apoptosis (1997) Curr. Biol., 7, pp. 455-460
  • Yan, N., Chai, J., Lee, E.S., Gu, L., Liu, Q., He, J., Wu, J.W., Hao, Q., Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans (2005) Nature, 437, pp. 831-837
  • Yang, X., Chang, H.Y., Baltimore, D., Essential role of CED-4 oligomerization in CED-3 activation and apoptosis (1998) Science, 281, pp. 1355-1357
  • Arama, E., Bader, M., Srivastava, M., Bergmann, A., Steller, H., The two Drosophila cytochrome c proteins can function in both respiration and caspase activation (2006) EMBO J., 25, pp. 232-243
  • Dorstyn, L., Kumar, S., A biochemical analysis of the activation of the Drosophila caspase DRONC (2008) Cell Death Differ., 15, pp. 461-470
  • Dorstyn, L., Read, S., Cakouros, D., Huh, J.R., Hay, B.A., Kumar, S., The role of cytochrome c in caspase activation in Drosophila melanogaster cells (2002) J. Cell Biol., 156, pp. 1089-1098
  • Kornbluth, S., White, K., Apoptosis in drosophila: Neither fish nor fowl (nor man, nor worm) (2005) J. Cell Sci., 118, pp. 1779-1787
  • Mendes, C.S., Arama, E., Brown, S., Scherr, H., Srivastava, M., Bergmann, A., Steller, H., Mllereau, B., Cytochrome c-d regulates developmental apoptosis in the Drosophila retina (2006) EMBO Rep., 7, pp. 933-939
  • Cheng, T.C., Akey, I.V., Yuan, S., Yu, Z., Ludtke, S.J., Akey, C.W., A near-atomic structure of the dark apoptosome provides insight into assembly and activation (2017) Structure, 25, pp. 40-52
  • Cheng, T.C., Hong, C., Akey, I.V., Yuan, S., Akey, C.W., A near atomic structure of the active human apoptosome (2016) ELife, 5, p. e17755
  • Sun, M.G., Williams, J., Munoz-Pinedo, C., Perkins, G.A., Brown, J.M., Ellisman, M.H., Green, D.R., Frey, T.G., Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis (2007) Nat. Cell Biol., 9, pp. 1057-1065
  • Li, K., Li, Y., Shelton, J.M., Richardson, J.A., Spencer, E., Chen, Z.J., Wang, X., Williams, R.S., Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis (2000) Cell, 101, pp. 389-399
  • King, M.P., Attardi, G., Human cells lacking mtDNA: Repopulation with exogenous mitochondria by complementation (1989) Science, 246, pp. 500-503
  • Hao, Z., Duncan, G.S., Chang, C.C., Elia, A., Fang, M., Wakeham, A., Okada, H., You-Ten, A., Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis (2005) Cell, 121, pp. 579-591
  • Yu, T., Wang, X., Purring-Koch, C., Wei, Y., McLendon, G.L., A mutational epitope for cytochrome C binding to the apoptosis protease activation factor-1 (2001) J. Biol. Chem., 276, pp. 13034-13038
  • Shilov, E.S., Kislyakov, I.V., Gorshkova, E.A., Zvartsev, R.V., Drutskaya, M.S., Mufazalov, I.A., Skulachev, V.P., Nedospasov, S.A., Mouse lymphomyeloid cells can function with significantly decreased expression levels of cytochrome C (2014) Biochemistry (Moscow), 79, pp. 1412-1422
  • Suofu, Y., Li, W., Jean-Alphonse, F.G., Jia, J., Khattar, N.K., Li, J., Baranov, S.V., He, Y., Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release (2017) Proc. Natl. Acad. Sci. U. S. A., 114, p. E7997
  • Mustonen, P., Virtanen, J.A., Somerharju, P.J., Kinnunen, P.K.J., Binding of cytochrome c to liposomes as revealed by the quenching of fluorescence from pyrene-labeled phospholipids (1987) Biochemistry, 26, pp. 2991-2997
  • Trusova, V.M., Gorbenko, G.P., Molotkovsky, J.G., Kinnunen, P.K., Cytochrome c-lipid interactions: New insights from resonance energy transfer (2010) Biophys. J., 99, pp. 1754-1763
  • Gorbenko, G.P., Molotkovsky, J.G., Kinnunen, P.K.J., Cytochrome c interaction with cardiolipin/phosphatidylcholine model membranes: Effect of cardiolipin protonation (2006) Biophys. J., 90, pp. 4093-4103
  • Mattila, J.P., Sabatini, K., Kinnunen, P.K.J., Interaction of Cytochrome c with 1-Palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine: Evidence for Acyl Chain Reversal (2008) Langmuir, 24, pp. 4157-4160
  • Zhao, H., Tuominen, E.K.J., Kinnunen, P.K.J., Formation of amyloid fibers triggered by phosphatidylserine-containing membranes (2004) Biochemistry, 43, pp. 10302-10307
  • Alakoskela, J.M., Jutila, A., Simonsen, A.C., Pirneskoski, J., Pyhajoki, S., Turunen, R., Marttila, S., Kinnunen, P.K.J., Characteristics of fibers formed by cytochrome c and induced by anionic phospholipids (2006) Biochemistry, 45, pp. 13447-13453
  • Gorbenko, G., Trusova, V., Sood, R., Molotkovsky, J., Kinnunen, P., The effect of lysozyme amyloid fibrils on cytochrome c-lipid interactions (2012) Chem. Phys. Lipids, 165, pp. 769-776
  • Hashimoto, M., Takeda, A., Hsu, L.J., Takenouchi, T., Masliah, E., Role of cytochrome c as a stimulator of ?-synuclein aggregation in lewy body disease (1999) J. Biol. Chem., 274, pp. 28849-28852
  • Bayir, H., Kapralov, A.A., Jiang, J., Huang, Z., Tyurina, Y.Y., Tyurin, V.A., Zhao, Q., Maeda, A., Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome c: Protection against apoptosis versus delayed oxidative stress in Parkinson disease (2009) J. Biol. Chem., 284, pp. 15951-15969
  • Kumar, A., Ganini, D., Mason, R.P., Role of cytochrome c in ?-synuclein radical formation: Implications of ?-synuclein in neuronal death in Maneb-and paraquat-induced model of Parkinson's disease (2016) Mol. Neurodegener., 11, p. 70
  • Lecocq, J., Ballou, C.E., On the structure of cardiolipin (1964) Biochemistry, 3, pp. 976-980
  • Pangborn, M., Isolation and purification of a serologically active phospholipid from beef heart (1942) J. Biol. Chem., 143, pp. 247-256
  • Kates, M., Syz, J.Y., Gosser, D., Haines, T.H., PH-dissociation characteristics of cardiolipin and its 2?-deoxy analogue (1993) Lipids, 28, pp. 882-887
  • Olofsson, G., Sparr, E., Ionization constants pKa of cardiolipin (2013) PLoS One, 8, p. e73040
  • Sathappa, M., Alder, N.N., The ionization properties of cardiolipin and its variants in model bilayers (2016) Biochim. Biophys. Acta, Biomembr., 1858, pp. 1362-1372
  • Kooijman, E.E., Swim, L.A., Graber, Z.T., Tyurina, Y.Y., Bayir, H., Kagan, V.E., Magic angle spinning 31P NMR spectroscopy reveals two essentially identical ionization states for the cardiolipin phosphates in phospholipid liposomes (2017) Biochim. Biophys. Acta, Biomembr., 1859, pp. 61-68
  • Malyshka, D., Pandiscia, L.A., Schweitzer-Stenner, R., Cardiolipin containing liposomes are fully ionized at physiological pH An FT-IR study of phosphate group ionization (2014) Vib. Spectrosc., 75, pp. 86-92
  • Powell, G.L., Jacobus, J., Nonequivalence of the phosphorus atoms in cardiolipin (1974) Biochemistry, 13, pp. 4024-4026
  • Schlame, M., Rua, D., Greenberg, M.L., The biosynthesis and functional role of cardiolipin (2000) Prog. Lipid Res., 39, pp. 257-288
  • Schlame, M., Otten, D., Analysis of cardiolipin molecular species by high-performance liquid chromatography of its derivative 1, 3-bisphosphatidyl-2-benzoyl-sn-glycerol dimethyl ester (1991) Anal. Biochem., 195, pp. 290-295
  • Schlame, M., Brody, S., Hostetler, K.Y., Mitochondrial cardiolipin in diverse eukaryotes (1993) Eur. J. Biochem., 212, pp. 727-735
  • Schlame, M., Shanske, S., Doty, S., Konig, T., Sculco, T., DiMauro, S., Blanck, T.J., Microanalysis of cardiolipin in small biopsies including skeletal muscle from patients with mitochondrial disease (1999) J. Lipid Res., 40, pp. 1585-1592
  • Ellis, C.E., Murphy, E.J., Mitchell, D.C., Golovko, M.Y., Scaglia, F., Barcelo-Coblijn, G.C., Nussbaum, R.L., Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking alpha-synuclein (2005) Mol. Cell. Biol., 25, pp. 19190-19201
  • Daum, G., Lipids of mitochondria (1985) Biochim. Biophys. Acta, Rev. Biomembr., 822, pp. 1-42
  • Hostetler, K., (1982) Phospholipids; Hawthorne, pp. 215-261. , J. N., Ansell, G. B., Eds.; Elsevier Science Publishers BV: Amsterdam
  • Robinson, N.C., Zborowski, J., Talbert, L.H., Cardiolipindepleted bovine heart cytochrome c oxidase: Binding stoichiometry and affinity for cardiolipin derivatives (1990) Biochemistry, 29, pp. 8962-8969
  • De Kroon, A.I., Dolis, D., Mayer, A., Lill, R., De Kruijff, B., Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa Is cardiolipin present in the mitochondrial outer membrane? (1997) Biochim. Biophys. Acta, Biomembr., 1325, pp. 108-116
  • Hovius, R., Lambrechts, H., Nicolay, K., De Kruijff, B., Improved methods to isolate and subfractionate rat liver mitochondria Lipid composition of the inner and outer membrane (1990) Biochim. Biophys. Acta, Biomembr., 1021, pp. 217-226
  • De Mena, I.R., Mahillo, E., Arribas, J., Castano, J., Kinetic mechanism of activation by cardiolipin (diphosphatidylglycerol) of the rat liver multicatalytic proteinase (1993) Biochem. J., 296, pp. 93-97
  • Hirai, H., Natori, S., Sekimizu, K., Reversal by phosphatidylglycerol and cardiolipin of inhibition of transcription and replication by histones in vitro (1992) Arch. Biochem. Biophys., 298, pp. 458-463
  • Kertesz, Z., Yu, B.B., Steinkasserer, A., Haupt, H., Benham, A., Sim, R.B., Characterization of binding of human B2-glycoprotein i to cardiolipin (1995) Biochem. J., 310, pp. 315-321
  • Morrice, N.A., Gabrielli, B., Kemp, B.E., Wettenhall, R., A cardiolipin-activated protein kinase from rat liver structurally distinct from the protein kinases C (1994) J. Biol. Chem., 269, pp. 20040-20046
  • Sekimizu, K., Kornberg, A., Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli (1988) J. Biol. Chem., 263, pp. 7131-7135
  • Klingenberg, M., Nelson, D.R., Structure-function relationships of the ADP/ATP carrier (1994) Biochim. Biophys. Acta, Bioenerg., 1187, pp. 241-244
  • Kadenbach, B., Mende, P., Kolbe, H., Stipani, I., Palmieri, F., The mitochondrial phosphate carrier has an essential requirement for cardiolipin (1982) FEBS Lett., 139, pp. 109-112
  • Eble, K.S., Coleman, W.B., Hantgan, R.R., Cunningham, C.C., Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy (1990) J. Biol. Chem., 265, pp. 19434-19440
  • Fry, M., Green, D.E., Cardiolipin requirement for electron transfer in complex i and III of the mitochondrial respiratory chain (1981) J. Biol. Chem., 256, pp. 1874-1880
  • Nacz, K.A., Bolli, R., Wojtczak, L., Azzi, A., The monocarboxylate carrier from bovine heart mitochondria: Partial purification and its substrate-transporting properties in a reconstituted system (1986) Biochim. Biophys. Acta, Bioenerg., 851, pp. 29-37
  • Robinson, N.C., Functional binding of cardiolipin to cytochromec oxidase (1993) J. Bioenerg. Biomembr., 25, pp. 153-163
  • Indiveri, C., Tonazzi, A., Prezioso, G., Palmieri, F., Kinetic characterization of the reconstituted carnitine carrier from rat liver mitochondria (1991) Biochim. Biophys. Acta, Biomembr., 1065, pp. 231-238
  • Lambeth, J.D., Cytochrome P-450scc Cardiolipin as an effector of activity of a mitochondrial cytochrome P-450 (1981) J. Biol. Chem., 256, pp. 4757-4762
  • Schlame, M., Hostetler, K., Solubilization, purification, and characterization of cardiolipin synthase from rat liver mitochondria Demonstration of its phospholipid requirement (1991) J. Biol. Chem., 266, pp. 22398-22403
  • Choi, S., Swanson, J.M., Interaction of cytochrome c with cardiolipin: An infrared spectroscopic study (1995) Biophys. Chem., 54, pp. 271-278
  • Heimburg, T., Marsh, D., Investigation of secondary and tertiary structural changes of cytochrome c in complexes with anionic lipids using amide hydrogen exchange measurements: An FTIR study (1993) Biophys. J., 65, pp. 2408-2417
  • Spooner, P.R., Watts, A., Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers 1 Evidence from deuterium NMR measurements (1991) Biochemistry, 30, pp. 3871-3879
  • Spooner, P., Duralski, A., Rankin, S., Pinheiro, T., Watts, A., Dynamics in a protein-lipid complex: Nuclear magnetic resonance measurements on the headgroup of cardiolipin when bound to cytochrome c (1993) Biophys. J., 65, pp. 106-112
  • Cortese, J.D., Voglino, A.L., Hackenbrock, C.R., Persistence of cytochrome c binding to membranes at physiological mitochondrial intermembrane space ionic strength (1995) Biochim. Biophys. Acta, Bioenerg., 1228, pp. 216-228
  • Kagan, V.E., Borisenko, G.G., Tyurina, Y.Y., Tyurin, V.A., Jiang, J., Potapovich, A.I., Kini, V., Fujii, Y., Oxidative lipidomics of apoptosis: Redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine (2004) Free Radical Biol. Med., 37, pp. 1963-1985
  • Pandiscia, L.A., Schweitzer-Stenner, R., Coexistence of nativelike and non-native partially unfolded ferricytochrome c on the surface of cardiolipin-containing liposomes (2015) J. Phys. Chem. B, 119, pp. 1334-1349
  • Sinibaldi, F., Milazzo, L., Howes, B.D., Piro, M.C., Fiorucci, L., Polticelli, F., Ascenzi, P., Santucci, R., The key role played by charge in the interaction of cytochrome c with cardiolipin (2017) JBIC, J. Biol. Inorg. Chem., 22, pp. 19-29
  • Rytomaa, M., Kinnunen, P.K., Evidence for two distinct acidic phospholipid-binding sites in cytochrome c (1994) J. Biol. Chem., 269, pp. 1770-1774
  • Rytomaa, M., Kinnunen, P.K., Reversibility of the binding of cytochrome c to liposomes implications for lipid-protein interactions (1995) J. Biol. Chem., 270, pp. 3197-3202
  • Sinibaldi, F., Fiorucci, L., Patriarca, A., Lauceri, R., Ferri, T., Coletta, M., Santucci, R., Insights into cytochrome c-cardiolipin interaction (2008) Role Played by Ionic Strength. Biochemistry, 47, pp. 6928-6935
  • Abe, M., Niibayashi, R., Koubori, S., Moriyama, I., Miyoshi, H., Molecular mechanisms for the induction of peroxidase activity of the cytochrome c-cardiolipin complex (2011) Biochemistry, 50, pp. 8383-8391
  • Kawai, C., Pessoto, F.S., Rodrigues, T., Mugnol, K.C., Tortora, V., Castro, L., Milicchio, V.A., Radi, R., PH-sensitive binding of cytochrome c to the inner mitochondrial membrane Implications for the participation of the protein in cell respiration and apoptosis (2009) Biochemistry, 48, pp. 8335-8342
  • Kobayashi, H., Nagao, S., Hirota, S., Characterization of the cytochrome c membrane-binding site using cardiolipin-containing bicelles with NMR (2016) Angew. Chem., Int. Ed., 55, pp. 14019-14022
  • Hong, Y., Muenzner, J., Grimm, S.K., Pletneva, E.V., Origin of the conformational heterogeneity of cardiolipin-bound cytochrome C (2012) J. Am. Chem. Soc., 134, pp. 18713-18723
  • Snider, E.J., Muenzner, J., Toffey, J.R., Hong, Y., Pletneva, E.V., Multifaceted effects of ATP on cardiolipin-bound cytochrome c (2013) Biochemistry, 52, pp. 993-995
  • Mandal, A., Hoop, C., DeLucia, M., Kodali, R., Kagan, V., Ahn, J., Van-Der-Wel, P., Structural changes and proapoptotic peroxidase activity of cardiolipin-bound mitochondrial cytochrome c (2015) Biophys. J., 109, pp. 1873-1884
  • Kitt, J.P., Bryce, D.A., Minteer, S.D., Harris, J.M., Raman spectroscopy reveals selective interactions of cytochrome c with cardiolipin that correlate with membrane permeability (2017) J. Am. Chem. Soc., 139, pp. 3851-3860
  • Bradley, J.M., Silkstone, G., Wilson, M.T., Cheesman, M.R., Butt, J.N., Probing a complex of cytochrome c and cardiolipin by magnetic circular dichroism spectroscopy: Implications for the initial events in apoptosis (2011) J. Am. Chem. Soc., 133, pp. 19676-19679
  • Sinibaldi, F., Howes, B.D., Piro, M.C., Polticelli, F., Bombelli, C., Ferri, T., Coletta, M., Santucci, R., Extended cardiolipin anchorage to cytochrome c: A model for protein-mitochondrial membrane binding (2010) JBIC, J. Biol. Inorg. Chem., 15, pp. 689-690
  • Milazzo, L., Tognaccini, L., Howes, B.D., Sinibaldi, F., Piro, M.C., Fittipaldi, M., Baratto, M.C., Smulevich, G., Unravelling the non-native low-spin state of the cytochrome c-cardiolipin complex: Evidence for the formation of a His ligated species only (2017) Biochemistry, 56, pp. 1887-1898
  • Simon, M., Metzinger-Le Meuth, V., Chevance, S., Delalande, O., Bondon, A., Versatility of non-native forms of human cytochrome c: PH and micellar concentration dependence (2013) JBIC, J. Biol. Inorg. Chem., 18, pp. 27-38
  • Milorey, B., Malyshka, D., Schweitzer-Stenner, R., PH dependence of ferricytochrome c conformational transitions during binding to cardiolipin membranes: Evidence for histidine as the distal ligand at neutral pH (2017) J. Phys. Chem. Lett., 8, pp. 1993-1998
  • Kawai, C., Ferreira, J.C., Baptista, M.S., Nantes, I.L., Not only oxidation of cardiolipin affects the affinity of cytochrome c for lipid bilayers (2014) J. Phys. Chem. B, 118, pp. 11863-11872
  • Wang, H., Blair, D.F., Ellis, W.R., Jr., Gray, H.B., Chan, S.I., Temperature dependence of the reduction potential of CuA in carbon monoxide inhibited cytochrome c oxidase (1986) Biochemistry, 25, pp. 167-171
  • Basova, L.V., Kurnikov, I.V., Wang, L., Ritov, V.B., Belikova, N.A., Vlasova, I.I., Pacheco, A.A., Bayir, H., Cardiolipin switch in mitochondria: Shutting off the reduction of cytochrome c and turning on the peroxidase activity (2007) Biochemistry, 46, pp. 3423-3434
  • Wei-Guo, J., Chang-Wei, L., Ji-Lin, T., Zheng-Yan, W., Shao-Jun, D., Er-Kang, W., Electrochemical and spectroscopic study on the interaction of cytochrome c with anionic lipid vesicles (2003) Chin. J. Chem., 21, pp. 544-549
  • Belikova, N.A., Vladimirov, Y.A., Osipov, A.N., Kapralov, A.A., Tyurin, V.A., Potapovich, M.V., Basova, L.V., Kagan, V.E., Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes (2006) Biochemistry, 45, pp. 4998-5009
  • Belikova, N.A., Tyurina, Y.Y., Borisenko, G., Tyurin, V., Samhan Arias, A.K., Yanamala, N., Furtmuller, P.G., Kagan, V.E., Heterolytic reduction of fatty acid hydroperoxides by cytochrome c/cardiolipin complexes: Antioxidant function in mitochondria (2009) J. Am. Chem. Soc., 131, pp. 11288-11289
  • Mugnol, K.C.U., Ando, R.A., Nagayasu, R.Y., Faljoni-Alario, A., Brochsztain, S., Santos, P.S., Nascimento, O.R., Nantes, I.L., Spectroscopic, structural, and functional characterization of the alternative low-spin state of horse heart cytochrome c (2008) Biophys. J., 94, pp. 4066-4077
  • Konstantinov, A.A., Vygodina, T., Capitanio, N., Papa, S., Ferrocyanide-peroxidase activity of cytochrome c oxidase (1998) Biochim. Biophys. Acta, Bioenerg., 1363, pp. 11-23
  • Miyamoto, S., Nantes, I.L., Faria, P.A., Cunha, D., Ronsein, G.E., Medeiros, M.H.G., Di Mascio, P., Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen (2012) Photochem. Photobiol. Sci., 11, pp. 1536-1546
  • Genaro-Mattos, T.C., Queiroz, R.F., Cunha, D., Appolinario, P.P., Di Mascio, P., Nantes, I.L., Augusto, O., Miyamoto, S., Cytochrome c reacts with cholesterol hydroperoxides to produce lipidand protein-derived radicals (2015) Biochemistry, 54, pp. 2841-2850
  • Ott, M., Robertson, J.D., Gogvadze, V., Zhivotovsky, B., Orrenius, S., Cytochrome c release from mitochondria proceeds by a two-step process (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 1259-1263
  • Oursler, M.J., Bradley, E.W., Elfering, S.L., Giulivi, C., Native, not nitrated, cytochrome c and mitochondria-derived hydrogen peroxide drive osteoclast apoptosis (2005) Am. J. Physiol. Cell Physiol., 288, pp. 156-168
  • Richter, C., Oxidative stress, mitochondria, and apoptosis (1998) Restor. Neurol. Neurosci., 12, pp. 59-62
  • He, Y., Liu, J., Grossman, D., Durrant, D., Sweatman, T., Lothstein, L., Epand, R.F., Lee, R.M., Phosphorylation of mitochondrial phospholipid scramblase 3 by protein kinase C-delta induces its activation and facilitates mitochondrial targeting of tBid (2007) J. Cell. Biochem., 101, pp. 1210-1221
  • Liu, J., Dai, Q., Chen, J., Durrant, D., Freeman, A., Liu, T., Grossman, D., Lee, R.M., Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response (2003) Mol. Cancer Res., 1, pp. 892-902
  • Van, Q., Liu, J., Lu, B., Feingold, K.R., Shi, Y., Lee, R.M., Hatch, G.M., Phospholipid scramblase-3 regulates cardiolipin de novo biosynthesis and its resynthesis in growing HeLa cells (2007) Biochem. J., 401, pp. 103-109
  • Brown, L., Wuthrich, K., NMR and ESR studies of the interactions of cytochrome c with mixed cardiolipin-phosphatidylcholine vesicles (1977) Biochim. Biophys. Acta, Biomembr., 468, pp. 389-410
  • Soussi, B., Bylund-Fellenius, A.C., Schersten, T., Angstrom, J., 1H-n.m.r evaluation of the ferricytochrome c-cardiolipin interaction. Effect of superoxide radicals (1990) Biochem. J., 265, pp. 227-232
  • Nakagawa, Y., Initiation of apoptotic signal by the peroxidation of cardiolipin of mitochondria (2004) Ann. N. Y. Acad. Sci., 1011, pp. 177-184
  • Tyurin, V.A., Tyurina, Y.Y., Kochanek, P.M., Hamilton, R., DeKosky, S.T., Greenberger, J.S., Bayir, H., Kagan, V.E., Oxidative lipidomics of programmed cell death (2008) Methods Enzymol., 442, pp. 375-393
  • Tyurina, Y.Y., Kini, V., Tyurin, V.A., Vlasova, I.I., Jiang, J., Kapralov, A.A., Belikova, N.A., Kagan, V.E., Mechanisms of cardiolipin oxidation by cytochrome c: Relevance to pro-and antiapoptotic functions of etoposide (2006) Mol. Pharmacol., 70, pp. 706-717
  • Atlante, A., Calissano, P., Bobba, A., Azzariti, A., Marra, E., Passarella, S., Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death (2000) J. Biol. Chem., 275, pp. 37159-37166
  • Paradies, G., Petrosillo, G., Pistolese, M., Ruggiero, F.M., The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles (2000) FEBS Lett., 466, pp. 323-326
  • Petrosillo, G., Ruggiero, F.M., Pistolese, M., Paradies, G., Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation (2001) Possible Role in the Apoptosis. FEBS Lett., 509, pp. 435-438
  • Yoshida, H., Kawane, K., Koike, M., Mori, Y., Uchiyama, Y., Nagata, S., Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells (2005) Nature, 437, pp. 754-758
  • Ermak, G., Davies, K.J., Calcium and oxidative stress: From cell signaling to cell death (2002) Mol. Immunol., 38, pp. 713-721
  • Orrenius, S., Zhivotovsky, B., Nicotera, P., Regulation of cell death: The calcium-apoptosis link (2003) Nat. Rev. Mol. Cell Biol., 4, pp. 552-565
  • Lee, M., Hyun, D.-H., Marshall, K.-A., Ellerby, L.M., Bredesen, D.E., Jenner, P., Halliwell, B., Effect of overexpression of BCL-2 on cellular oxidative damage, nitric oxide production, antioxidant defenses, and the proteasome (2001) Free Radical Biol. Med., 31, pp. 1550-1559
  • Lindsten, T., Ross, A.J., King, A., Zong, W.-X., Rathmell, J.C., Shiels, H.A., Ulrich, E., Frauwirth, K., The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues (2000) Mol. Cell, 6, pp. 1389-1399
  • Grijalba, M.T., Vercesi, A.E., Schreier, S., Ca2+-induced increased lipid packing and domain formation in submitochondrial particles A possible early step in the mechanism of Ca2+-stimulated generation of reactive oxygen species by the respiratory chain (1999) Biochemistry, 38, pp. 13279-13287
  • Halestrap, A.P., McStay, G.P., Clarke, S.J., The permeability transition pore complex: Another view (2002) Biochimie, 84, pp. 153-166
  • Marzo, I., Brenner, C., Zamzami, N., Susin, S.A., Beutner, G., Brdiczka, D., Remy, R., Kroemer, G., The permeability transition pore complex: A target for apoptosis regulation by caspases and Bcl-2-related proteins (1998) J. Exp. Med., 187, pp. 1261-1271
  • Crompton, M., The mitochondrial permeability transition pore and its role in cell death (1999) Biochem. J., 341, pp. 233-249
  • Halestrap, A.P., Kerr, P.M., Javadov, S., Woodfield, K.-Y., Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart (1998) Biochim. Biophys. Acta, Bioenerg., 1366, pp. 79-94
  • Adams, J.M., Cory, S., The Bcl-2 protein family: Arbiters of cell survival (1998) Science, 281, pp. 1322-1326
  • Beales, P.A., Bergstrom, C.L., Geerts, N., Groves, J.T., Vanderlick, T.K., Single vesicle observations of the cardiolipincytochrome c interaction: Induction of membrane morphology changes (2011) Langmuir, 27, pp. 6107-6125
  • Bergstrom, C.L., Beales, P.A., Lv, Y., Vanderlick, T.K., Groves, J.T., Cytochrome c causes pore formation in cardiolipincontaining membranes (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 6269-6274
  • De Kruijff, B., Cullis, P., Cytochrome c specifically induces nonbilayer structures in cardiolipin-containing model membranes (1980) Biochim. Biophys. Acta, Biomembr., 602, pp. 477-490
  • Firsov, A.M., Kotova, E.A., Korepanova, E.A., Osipov, A.N., Antonenko, Y.N., Peroxidative permeabilization of liposomes induced by cytochrome c/cardiolipin complex (2015) Biochim. Biophys. Acta, Biomembr., 1848, pp. 767-774
  • Robertson, J.D., Orrenius, S., Zhivotovsky, B., Review: Nuclear events in apoptosis (2000) J. Struct. Biol., 129, pp. 346-348
  • Nicholson, D.W., Ali, A., Thornberry, N.A., Vaillancourt, J.P., Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis (1995) Nature, 376, pp. 37-43
  • Slee, E.A., Harte, M.T., Kluck, R.M., Wolf, B.B., Casiano, C.A., Newmeyer, D.D., Wang, H.-G., Alnemri, E.S., Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner (1999) J. Cell Biol., 144, pp. 281-292
  • Kroemer, G., Reed, J.C., Mitochondrial control of cell death (2000) Nat. Med., 6, pp. 513-519
  • Reed, J.C., Cytochrome c: Can't live with it-can't live without it (1997) Cell, 91, pp. 559-562
  • Zalk, R., Israelson, A., Garty, E.S., Azoulay-Zohar, H., Shoshan-Barmatz, V., Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria (2005) Biochem. J., 386, pp. 73-83
  • Jiang, J., Bakan, A., Kapralov, A.A., Silva, K.I., Huang, Z., Amoscato, A.A., Peterson, J., Bayir, H., Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: Mitochondria-targeted imidazole-substituted fatty acids (2014) Free Radical Biol. Med., 71, pp. 221-230
  • Kagan, V.E., Bayir, A., Bayir, H., Stoyanovsky, D., Borisenko, G.G., Tyurina, Y.Y., Wipf, P., Chapkin, R.S., Mitochondria-targeted disruptors and inhibitors of cytochrome c/cardiolipin peroxidase complexes: A new strategy in anti-apoptotic drug discovery (2009) Mol. Nutr. Food Res., 53, pp. 104-114
  • Irwin, J.J., Shoichet, B.K., ZINC-A free database of commercially available compounds for virtual screening (2005) J. Chem. Inf. Model., 45, pp. 177-182
  • Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., Coleman, R.G., ZINC: A free tool to discover chemistry for biology (2012) J. Chem. Inf. Model., 52, pp. 1757-1768
  • Bakan, A., Kapralov, A.A., Bayir, H., Hu, F., Kagan, V.E., Bahar, I., Inhibition of peroxidase activity of cytochrome c: De novo compound discovery and validation (2015) Mol. Pharmacol., 88, pp. 421-427
  • Nur, E.K.A., Gross, S.R., Pan, Z., Balklava, Z., Ma, J., Liu, L.F., Nuclear translocation of cytochrome c during apoptosis (2004) J. Biol. Chem., 279, pp. 24911-24914
  • Zhao, S., Aviles, E.R., Jr., Fujikawa, D.G., Nuclear translocation of mitochondrial cytochrome c, lysosomal cathepsins B and D, and three other death-promoting proteins within the first 60 minutes of generalized seizures (2010) J. Neurosci. Res., 88, pp. 1727-1737
  • Kruglik, S.G., Yoo, B.K., Lambry, J.C., Martin, J.L., Negireri, M., Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states (2017) Phys. Chem. Chem. Phys., 19, pp. 21317-21334
  • Schonhoff, C.M., Gaston, B., Mannick, J.B., Nitrosylation of cytochrome c during apoptosis (2003) J. Biol. Chem., 278, pp. 18265-18270
  • Ascenzi, P., Marino, M., Ciaccio, C., Santucci, R., Coletta, M., Reductive nitrosylation of the cardiolipin-ferric cytochrome c complex (2014) IUBMB Life, 66, pp. 438-447
  • Barczyk, K., Kreuter, M., Pryjma, J., Booy, E.P., Maddika, S., Ghavami, S., Berdel, W.E., Los, M., Serum cytochrome c indicates in vivo apoptosis and can serve as a prognostic marker during cancer therapy (2005) Int. J. Cancer, 116, pp. 167-173
  • Renz, A., Berdel, W.E., Kreuter, M., Belka, C., Schulze-Osthoff, K., Los, M., Rapid extracellular release of cytochrome c is specific for apoptosis and marks cell death in vivo (2001) Blood, 98, pp. 1542-1548
  • Gvatua, N.A., Komissarenko, S.V., Skok, M.V., Solonenko, I.N., Veselovskaia, L.D., Galitskaia, A.K., Determination of the concentration of cytochrome c and its antibodies in the blood serum for the diagnosis and prognosis of complications in myocardial infarct patients (1990) Ter. Arkh., 62, pp. 58-61
  • Alleyne, T., Joseph, J., Sampson, V., Cytochrome-c detection (2001) Appl. Biochem. Biotechnol., 90, pp. 97-105
  • Ben-Ari, Z., Schmilovotz-Weiss, H., Belinki, A., Pappo, O., Sulkes, J., Neuman, M.G., Kaganovsky, E., Klein, T., Circulating soluble cytochrome c in liver disease as a marker of apoptosis (2003) J. Intern. Med., 254, pp. 168-175
  • Adachi, N., Hirota, M., Hamaguchi, M., Okamoto, K., Watanabe, K., Endo, F., Serum cytochrome c level as a prognostic indicator in patients with systemic inflammatory response syndrome (2004) Clin. Chim. Acta, 342, pp. 127-136
  • Nunoi, H., Mercado, M.R., Mizukami, T., Okajima, K., Morishima, T., Sakata, H., Nakayama, S., Mori, H., Apoptosis under hypercytokinemia is a possible pathogenesis in influenza-associated encephalopathy (2005) Pediatr. Int., 47, pp. 175-179
  • Pullerits, R., Bokarewa, M., Jonsson, I.M., Verdrengh, M., Tarkowski, A., Extracellular cytochrome c, a mitochondrial apoptosisrelated protein, induces arthritis (2005) Rheumatology, 44, pp. 32-39
  • Cummings, C., Walder, J., Treeful, A., Jemmerson, R., Serum leucine-rich alpha-2-glycoprotein-1 binds cytochrome c and inhibits antibody detection of this apoptotic marker in enzyme-linked immunosorbent assay (2006) Apoptosis, 11, pp. 1121-1129
  • O'Donnell, L.C., Druhan, L.J., Avalos, B.R., Molecular characterization and expression analysis of leucine-rich ?2-glycoprotein, a novel marker of granulocytic differentiation (2002) J. Leukoc. Biol., 72, pp. 478-485
  • Codina, R., Vanasse, A., Kelekar, A., Vezys, V., Jemmerson, R., Cytochrome c-induced lymphocyte death from the outside in: Inhibition by serum leucine-rich alpha-2-glycoprotein-1 (2010) Apoptosis, 15, pp. 139-152
  • Shirai, R., Gotou, R., Hirano, F., Ikeda, K., Inoue, S., Autologous extracellular cytochrome c is an endogenous ligand for leucine-rich ?2-glycoprotein and ?-type phospholipase A2 inhibitor (2010) J. Biol. Chem., 285, pp. 21607-21614
  • Batthyany, C., Souza, J.M., Duran, R., Cassina, A., Cervenansky, C., Radi, R., Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite (2005) Biochemistry, 44, pp. 8038-8046
  • Cassina, A.M., Hodara, R., Souza, J.M., Thomson, L., Castro, L., Ischiropoulos, H., Freeman, B.A., Radi, R., Cytochrome c nitration by peroxynitrite (2000) J. Biol. Chem., 275, pp. 21409-21415
  • Souza, J.M., Castro, L., Cassina, A.M., Batthyany, C., Radi, R., Nitrocytochrome c: Synthesis, purification, and functional studies (2008) Methods Enzymol., 441, pp. 197-215
  • Radi, R., Nitric oxide, oxidants, and protein tyrosine nitration (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 4003-4008
  • Radi, R., Protein tyrosine nitration: Biochemical mechanisms and structural basis of functional effects (2013) Acc. Chem. Res., 46, pp. 550-559
  • Souza, J.M., Peluffo, G., Radi, R., Protein tyrosine nitration- functional alteration or just a biomarker? (2008) Free Radical Biol. Med., 45, pp. 357-366
  • Cruthirds, D.L., Novak, L., Akhi, K.M., Sanders, P.W., Thompson, J.A., MacMillan-Crow, L.A., Mitochondrial targets of oxidative stress during renal ischemia/reperfusion (2003) Arch. Biochem. Biophys., 412, pp. 27-33
  • Peluffo, G., Radi, R., Biochemistry of protein tyrosine nitration in cardiovascular pathology (2007) Cardiovasc. Res., 75, pp. 291-302
  • Nakagawa, H., Komai, N., Takusagawa, M., Miura, Y., Toda, T., Miyata, N., Ozawa, T., Ikota, N., Nitration of specific tyrosine residues of cytochrome C is associated with caspase-cascade inactivation (2007) Biol. Pharm. Bull., 30, pp. 15-20
  • Jang, B., Han, S., Biochemical properties of cytochrome c nitrated by peroxynitrite (2006) Biochimie, 88, pp. 53-58
  • Rodriguez-Roldan, V., Garcia-Heredia, J.M., Navarro, J.A., De La Rosa, M.A., Hervas, M., Effect of nitration on the physicochemical and kinetic features of wild-type and monotyrosine mutants of human respiratory cytochrome c (2008) Biochemistry, 47, pp. 12371-12379
  • Radi, R., Sims, S., Cassina, A., Turrens, J.F., Roles of catalase and cytochrome C in hydroperoxide-dependent lipid peroxidation and chemiluminescence in rat heart and kidney mitochondria (1993) Free Radical Biol. Med., 15, pp. 653-659
  • Ly, H.K., Utesch, T., Diaz-Moreno, I., Garcia-Heredia, J.M., De La Rosa, M.A., Hildebrandt, P., Perturbation of the redox site structure of cytochrome c variants upon tyrosine nitration (2012) J. Phys. Chem. B, 116, pp. 5694-5702
  • Garcia-Heredia, J.M., Diaz-Moreno, I., Nieto, P.M., Orzaez, M., Kocanis, S., Teixeira, M., Perez-Paya, E., De La Rosa, M.A., Nitration of tyrosine 74 prevents human cytochrome c to play a key role in apoptosis signaling by blocking caspase-9 activation (2010) Biochim. Biophys. Acta, Bioenerg., 1797, pp. 981-993
  • Diaz-Moreno, I., Garcia-Heredia, J.M., Diaz-Quintana, A., Teixeira, M., De La Rosa, M.A., Nitration of tyrosines 46 and 48 induces the specific degradation of cytochrome c upon change of the heme iron state to high-spin (2011) Biochim. Biophys. Acta, Bioenerg., 1807, pp. 1616-1623
  • Mohan, R., Atreja, S.K., Tyrosine phosphorylation of cytochrome c as a signaling event in frozen thawed buffalo spermatozoa at the cross-roads of capacitation and apoptosis (2015) Cryobiology, 70, pp. 253-261
  • Sanderson, T.H., Mahapatra, G., Pecina, P., Ji, Q., Yu, K., Sinkler, C., Varughese, A., Tousignant, R.N., Cytochrome C is tyrosine 97 phosphorylated by neuroprotective insulin treatment (2013) PLoS One, 8, p. e78627
  • Mahapatra, G., Varughese, A., Ji, Q., Lee, I., Liu, J., Vaishnav, A., Sinkler, C., Sanderson, T.H., Phosphorylation of cytochrome c threonine 28 regulates electron transport chain activity in kidney: Implications for amp kinase (2017) J. Biol. Chem., 292, pp. 64-79
  • Guerra-Castellano, A., Diaz-Moreno, I., Velazquez-Campoy, A., De La Rosa, M.A., Diaz-Quintana, A., Structural and functional characterization of phosphomimetic mutants of cytochrome c at threonine 28 and serine 47 (2016) Biochim. Biophys. Acta, Bioenerg., 1857, pp. 387-395
  • Sies, H., Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress (2017) Redox Biol., 11, pp. 613-619
  • Takakura, H., Yamamoto, T., Sherman, F., Sequence requirement for trimethylation of yeast cytochrome c (1997) Biochemistry, 36, pp. 2642-2648
  • Polevoda, B., Martzen, M.R., Das, B., Phizicky, E.M., Sherman, F., Cytochrome c methyltransferase, Ctm1p, of yeast (2000) J. Biol. Chem., 275, pp. 20508-20513
  • Kluck, R.M., Ellerby, L.M., Ellerby, H.M., Naiem, S., Yaffe, M.P., Margoliash, E., Bredesen, D., Newmeyer, D.D., Determinants of cytochrome c pro-apoptotic activity the role of lysine 72 trimethylation (2000) J. Biol. Chem, 275, pp. 16127-16133
  • Clements, J.M., O'Connell, L.I., Tsunasawa, S., Sherman, F., Expression and activity of a gene encoding rat cytochrome c in the yeast Saccharomyces cerevisiae (1989) Gene, 83, pp. 1-14
  • Azzi, A., Montecucco, C., Richter, C., The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biological membranes (1975) Biochem. Biophys. Res. Commun., 65, pp. 597-603
  • Kim, S.C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Xiao, L., Substrate and functional diversity of lysine acetylation revealed by a proteomics survey (2006) Mol. Cell, 23, pp. 607-618
  • Lett, C.M., Guillemette, J.G., Increasing the redox potential of isoform 1 of yeast cytochrome c through the modification of select haem interactions (2002) Biochem. J., 362, pp. 281-287
  • Garcia-Heredia, J.M., Diaz-Moreno, I., Diaz-Quintana, A., Orzaez, M., Navarro, J.A., Hervas, M., De La Rosa, M.A., Specific nitration of tyrosines 46 and 48 makes cytochrome c assemble a nonfunctional apoptosome (2012) FEBS Lett., 586, pp. 154-158
  • Bertini, I., Chevance, S., Del Conte, R., Lalli, D., Turano, P., The anti-apoptotic Bcl-x(L) protein, a new piece in the puzzle of cytochrome c interactome (2011) PLoS One, 6, p. e18329
  • Kalathur, R.K.R., Pinto, J.P., Hernandez-Prieto, M.A., Machado, R.S.R., Almeida, D., Chaurasia, G., Futschik, M.E., UniHI 7: An enhanced database for retrieval and interactive analysis of human molecular interaction networks (2014) Nucleic Acids Res., 42, pp. 408-414
  • Gonzalez-Arzola, K., Diaz-Quintana, A., Rivero-Rodriguez, F., Velazquez-Campoy, A., De La Rosa, M.A., Diaz-Moreno, I., Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome c (2017) Nucleic Acids Res., 45, pp. 2150-2165
  • Lo, Y.T., Huang, H.W., Huang, Y.C., Chan, J.F., Hsu, Y.H., Elucidation of tRNA-cytochrome c interactions through hydrogen/ deuterium exchange mass spectrometry (2017) Biochim. Biophys. Acta, Proteins Proteomics, 1865, pp. 539-546
  • Gorla, M., Sepuri, N.B., Perturbation of apoptosis upon binding of tRNA to the heme domain of cytochrome c (2014) Apoptosis, 19, pp. 259-268
  • Mei, Y., Yong, J., Liu, H., Shi, Y., Meinkoth, J., Dreyfuss, G., Yang, X., TRNA binds to cytochrome c and inhibits caspase activation (2010) Mol. Cell, 37, pp. 668-678
  • Saikia, M., Jobava, R., Parisien, M., Putnam, A., Krokowski, D., Gao, X.H., Guan, B.J., Feng, Z., Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress (2014) Mol. Cell. Biol., 34, pp. 2450-2463
  • Burmester, T., Weich, B., Reinhardt, S., Hankeln, T., A vertebrate globin expressed in the brain (2000) Nature, 407, pp. 520-523
  • Brittain, T., Skommer, J., Henty, K., Birch, N., Raychaudhuri, S., A role for human neuroglobin in apoptosis (2010) IUBMB Life, 62, pp. 878-885
  • Fago, A., Mathews, A.J., Moens, L., Dewilde, S., Brittain, T., The reaction of neuroglobin with potential redox protein partners cytochrome b5 and cytochrome c (2006) FEBS Lett., 580, pp. 4884-4888
  • Paltrinieri, L., Di Rocco, G., Battistuzzi, G., Borsari, M., Sola, M., Ranieri, A., Zanetti-Polzi, L., Bortolotti, C.A., Computational evidence support the hypothesis of neuroglobin also acting as an electron transfer species (2017) JBIC, J. Biol. Inorg. Chem., 22, pp. 615-623
  • Fago, A., Mathews, A.J., Brittain, T., A role for neuroglobin: Resetting the trigger level for apoptosis in neuronal and retinal cells (2008) IUBMB Life, 60, pp. 398-401
  • Liu, A., Brittain, T., A futile redox cycle involving neuroglobin observed at physiological temperature (2015) Int. J. Mol. Sci., 16, pp. 20082-20094
  • Banci, L., Bertini, I., Rosato, A., Varani, G., Mitochondrial cytochromes c: A comparative analysis (1999) JBIC, J. Biol. Inorg. Chem., 4, pp. 824-837
  • Pecci, A., Diagnosis and treatment of inherited thrombocytopenias (2016) Clin. Genet., 89, pp. 141-153
  • Olteanu, A., Patel, C.N., Dedmon, M.M., Kennedy, S., Linhoff, M.W., Minder, C.M., Potts, P.R., Pielak, G.J., Stability and apoptotic activity of recombinant human cytochrome c (2003) Biochem. Biophys. Res. Commun., 312, pp. 733-740
  • Josephs, T.M., Hibbs, M.E., Ong, L., Morison, I.M., Ledgerwood, E.C., Interspecies variation in the functional consequences of mutation of cytochrome c (2015) PLoS One, 10, p. e0130292
  • Ong, L., Morison, I.M., Ledgerwood, E.C., Megakaryocytes from CYCS mutation-associated thrombocytopenia release platelets by both proplatelet-dependent and-independent processes (2017) Br. J. Haematol., 176, pp. 268-279
  • Savoia, A., Noris, P., Perrotta, S., Punzo, F., Rocco, D.D., Oostra, B.A., Balduini, C.L., Absence of CYCS mutations in a large Italian cohort of patients with inherited thrombocytopenias of unknown origin (2009) Platelets, 20, pp. 72-73
  • Johnson, B., Lowe, G.C., Futterer, J., Lordkipanidze, M., MacDonald, D., Simpson, M.A., Sanchez-Guiu, I., Leo, V., Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects (2016) Haematologica, 101, pp. 1170-1179
  • Freson, K., Wijgaerts, A., Van Geet, C., Update on the causes of platelet disorders and functional consequences (2014) Int. J. Lab. Hematol., 36, pp. 313-325
  • Freson, K., Insights in megakaryopoiesis and platelet biogenesis from studies of inherited thrombocytopenias (2016) Molecular and Celular Biology of Platelet Formation, pp. 307-326. , Schulze, H., Italiano, J., Eds.; Springer International Publishing: Switzerland
  • Johnson, B., Fletcher, S.J., Morgan, N.V., Inherited thrombocytopenia: Novel insights into megakaryocyte maturation, proplatelet formation and platelet lifespan (2016) Platelets, 27, pp. 519-525
  • Savoia, A., Molecular basis of inherited thrombocytopenias (2016) Clin. Genet., 89, pp. 154-162
  • Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O'Donnell-Luria, A.H., Cummings, B.B., Analysis of protein-coding genetic variation in 60,706 humans (2016) Nature, 536, pp. 285-291
  • Gardner, K., Hall, P.A., Chinnery, P.F., Payne, B.A., HIV treatment and associated mitochondrial pathology: Review of 25 years of in vitro, animal, and human studies (2014) Toxicol. Pathol., 42, pp. 811-822
  • Neuman, M.G., Benhamou, J.P., Marcellin, P., Valla, D., Malkiewicz, I.M., Katz, G.G., Trepo, C., Cohen, L., Cytokine-chemokine and apoptotic signatures in patients with hepatitis C (2007) Transl. Res., 149, pp. 126-136
  • Amdursky, N., Ferber, D., Bortolotti, C.A., Dolgikh, D.A., Chertkova, R.V., Pecht, I., Sheves, M., Cahen, D., Solid-state electron transport via cytochrome c depends on electronic coupling to electrodes and across the protein (2014) Proc. Natl. Acad. Sci. U. S. A., 111, pp. 5556-5561
  • Peng, C., Liu, J., Xie, Y., Zhou, J., Molecular simulations of cytochrome c adsorption on positively charged surfaces: The influence of anion type and concentration (2016) Phys. Chem. Chem. Phys., 18, pp. 9979-9989
  • Salamifar, S.E., Lee, S., Lai, R.Y., Electrochemical hydrogen peroxide sensors fabricated using cytochrome c immobilized on macroelectrodes and ultramicroelectrodes (2014) Colloids Surf., B, 123, pp. 866-869
  • Bhambhani, A., Chah, S., Hvastkovs, E.G., Jensen, G.C., Rusling, J.F., Zare, R.N., Kumar, C.V., Folding control and unfolding free energy of yeast iso-1-cytochrome c bound to layered zirconium phosphate materials monitored by surface plasmon resonance (2008) J. Phys. Chem. B, 112, pp. 9201-9208
  • Gunawan, C.A., Nam, E.V., Marquis, C.P., Gooding, J.J., Thordarson, P., Zhao, C., Scanning electrochemical microscopy of cytochrome c peroxidase through the orientation-controlled immobilisation of cytochrome c (2016) ChemElectroChem, 3, pp. 1150-1156
  • Suarez, G., Santschi, C., Martin, O.J., Slaveykova, V.I., Biosensor based on chemically-designed anchorable cytochrome c for the detection of H2O2 released by aquatic cells (2013) Biosens. Bioelectron., 42, pp. 385-390
  • Weidinger, I.M., Murgida, D.H., Dong, W.F., Mohwald, H., Hildebrandt, P., Redox processes of cytochrome c immobilized on solid supported polyelectrolyte multilayers (2006) J. Phys. Chem. B, 110, pp. 522-529
  • Grochol, J., Dronov, R., Lisdat, F., Hildebrandt, P., Murgida, D.H., Electron transfer in SAM/cytochrome/polyelectrolyte hybrid systems on electrodes: A time-resolved surface-enhanced resonance Raman study (2007) Langmuir, 23, pp. 11289-11294
  • Patila, M., Pavlidis, I.V., Kouloumpis, A., Dimos, K., Spyrou, K., Katapodis, P., Gournis, D., Stamatis, H., Graphene oxide derivatives with variable alkyl chain length and terminal functional groups as supports for stabilization of cytochrome c (2016) Int. J. Biol. Macromol., 84, pp. 227-235
  • Washmon-Kriel, L., Jimenez, V.L., Balkus, K.J., Jr., Cytochrome c immobilization into mesoporous molecular sieves (2000) J. Mol. Catal. B: Enzym., 10, pp. 453-469
  • Marquez, J., Chazaro-Ruiz, L.F., Zimanyi, L., Palestino, G., Immobilization strategies and electrochemical evaluation of porous silicon based cytochrome c electrode (2014) Electrochim. Acta, 140, pp. 550-556
  • Zhou, Y., Zhi, J., Zou, Y., Zhang, W., Lee, S.T., Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode (2008) Anal. Chem., 80, pp. 4141-4146
  • Dai, Y., Proshlyakov, D.A., Swain, G.M., Effects of film morphology and surface chemistry on the direct electrochemistry of cytochrome c at boron-doped diamond electrodes (2016) Electrochim. Acta, 197, pp. 129-138
  • Veal, E.A., Day, A.M., Morgan, B.A., Hydrogen peroxide sensing and signaling (2007) Mol. Cell, 26, pp. 1-14
  • Marinho, H.S., Real, C., Cyrne, L., Soares, H., Antunes, F., Hydrogen peroxide sensing, signaling and regulation of transcription factors (2014) Redox Biol., 2, pp. 535-562
  • Feng, J.J., Zhao, G., Xu, J.J., Chen, H.Y., Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan (2005) Anal. Biochem., 342, pp. 280-286
  • Liang, F., Jia, M., Hu, J., Pt-implanted indium tin oxide electrodes and their amperometric sensor applications for nitrite and hydrogen peroxide (2012) Electrochim. Acta, 75, pp. 414-419
  • Liang, F., Liu, C., Jiao, J., Li, S., Xia, J., Hu, J., ITO electrode modified by a gold ion implantation technique for direct electrocatalytic sensing of hydrogen peroxide (2012) Microchim. Acta, 177, pp. 389-395
  • Liu, H., Tian, Y., Deng, Z., Morphology-dependent electrochemistry and electrocatalytical activity of cytochrome c (2007) Langmuir, 23, pp. 9487-9494
  • Wang, Q., Li, W., Qian, D., Li, Y., Bao, N., Gu, H., Yu, C., Paper-based analytical device for detection of extracellular hydrogen peroxide and its application to evaluate drug-induced apoptosis (2016) Electrochim. Acta, 204, pp. 128-135
  • Xiang, C., Zou, Y., Qiu, S., Sun, L., Xu, F., Zhou, H., Bienzymatic glucose biosensor based on direct electrochemistry of cytochrome c on gold nanoparticles/polyaniline nanospheres composite (2013) Talanta, 110, pp. 96-100
  • Yagati, A.K., Lee, T., Min, J., Choi, J.W., Electrochemical performance of gold nanoparticle-cytochrome c hybrid interface for H2O2 detection (2012) Colloids Surf., B, 92, pp. 161-167
  • Zhu, A., Tian, Y., Liu, H., Luo, Y., Nanoporous gold film encapsulating cytochrome c for the fabrication of a H2O2 biosensor (2009) Biomaterials, 30, pp. 3183-3188
  • Luo, Y., Liu, H., Rui, Q., Tian, Y., Detection of extracellular H2O2 released from human liver cancer cells based on TiO2 nanoneedles with enhanced electron transfer of cytochrome c (2009) Anal. Chem., 81, pp. 3035-3041
  • Zhu, A., Luo, H., Tian, Y., Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film (2009) Anal. Chem., 81, pp. 7243-7247
  • Zhao, G., Lei, Y., Zhang, Y., Li, H., Liu, M., Growth and favorable bioelectrocatalysis of multishaped nanocrystal au in vertically aligned TiO2 nanotubes for hemoprotein (2008) J. Phys. Chem. C, 112, pp. 14786-14795
  • Rui, Q., Komori, K., Tian, Y., Liu, H., Luo, Y., Sakai, Y., Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets (2010) Anal. Chim. Acta, 670, pp. 57-62
  • Mohammadi, A., Moghaddam, A.B., Ahadi, S., Dinarvand, R., Khodadadi, A.A., Application of cobalt oxide nanoparticles as an electron transfer facilitator in direct electron transfer and biocatalytic reactivity of cytochrome c (2011) J. Appl. Electrochem., 41, pp. 115-121
  • Lata, S., Batra, B., Karwasra, N., Pundir, C.S., An amperometric H2O2 biosensor based on cytochrome c immobilized onto nickel oxide nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode (2012) Process Biochem., 47, pp. 992-998
  • Moghaddam, A.B., Ganjali, M.R., Dinarvand, R., Razavi, T., Saboury, A.A., Moosavi-Movahedi, A.A., Norouzi, P., Direct electrochemistry of cytochrome c on electrodeposited nickel oxide nanoparticles (2008) J. Electroanal. Chem., 614, pp. 83-92
  • Deng, Z., Gong, Y., Luo, Y., Tian, Y., WO3 nanostructures facilitate electron transfer of enzyme: Application to detection of H2O2 with high selectivity (2009) Biosens. Bioelectron., 24, pp. 2465-2469
  • Dinesh, B., Mani, V., Saraswathi, R., Chen, S.M., Direct electrochemistry of cytochrome c immobilized on a graphene oxide-carbon nanotube composite for picomolar detection of hydrogen peroxide (2014) RSC Adv., 4, pp. 28229-28237
  • Eguilaz, M., Agui, L., Yanez-Sedeno, P., Pingarron, J.M., A biosensor based on cytochrome c immobilization on a poly-3-methylthiophene/multi-walled carbon nanotubes hybrid-modified electrode Application to the electrochemical determination of nitrite (2010) J. Electroanal. Chem., 644, pp. 30-35
  • Eguilaz, M., Gutierrez, A., Rivas, G., Non-covalent functionalization of multi-walled carbon nanotubes with cytochrome c: Enhanced direct electron transfer and analytical applications (2016) Sens. Actuators, B, 225, pp. 74-80
  • Kumar, S.A., Wang, S.F., Yeh, C.T., Lu, H.C., Yang, J.C., Chang, Y.T., Direct electron transfer of cytochrome c and its electrocatalytic properties on multiwalled carbon nanotubes/ciprofloxacin films (2010) J. Solid State Electrochem., 14, pp. 2129-2135
  • Lee, K.P., Gopalan, A.I., Komathi, S., Direct electrochemistry of cytochrome c and biosensing for hydrogen peroxide on polyaniline grafted multi-walled carbon nanotube electrode (2009) Sens. Actuators, B, 141, pp. 518-525
  • Liu, X., Bu, C., Nan, Z., Zheng, L., Qiu, Y., Lu, X., Enzymes immobilized on amine-terminated ionic liquid-functionalized carbon nanotube for hydrogen peroxide determination (2013) Talanta, 105, pp. 63-68
  • Tanne, J., Dietzel, B., Scheller, F.W., Bier, F., Nanohybrid materials consisting of Poly[(3-aminobenzoic acid)-co-(3-aminobenzenesulfonic acid)-co-aniline] and multiwalled carbon nanotubes for immobilization of redox active cytochrome c (2014) Electroanalysis, 26, pp. 732-738
  • Xiang, C., Zou, Y., Sun, L.X., Xu, F., Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film (2008) Electrochem. Commun., 10, pp. 38-41
  • Zhang, Y., Zheng, J., Direct electrochemistry and electrocatalysis of cytochrome c based on chitosan-room temperature ionic liquid-carbon nanotubes composite (2008) Electrochim. Acta, 54, pp. 749-754
  • Zhao, G.C., Yin, Z.Z., Zhang, L., Wei, X.W., Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2 (2005) Electrochem. Commun., 7, pp. 256-260
  • Song, Y., Liu, H., Wan, L., Wang, Y., Hou, H., Wang, L., Direct electrochemistry of cytochrome c based on poly-(diallyldimethylammonium chloride)-graphene nanosheets/gold nanoparticles hybrid nanocomposites and its biosensing (2013) Electroanalysis, 25, pp. 1400-1409
  • Vilela, E.T., Carvalho, D.R.C.S., Yotsumoto Neto, S., Luz, D.R.C.S., Damos, F.S., Exploiting charge/ions compensating processes in PANI/SPANI/reduced graphene oxide composite for development of a high sensitive H2O2 sensor (2015) J. Electroanal. Chem., 752, pp. 75-81
  • Wang, G.X., Qian, Y., Cao, X.X., Xia, X.H., Direct electrochemistry of cytochrome c on a graphene/poly (3,4-ethylenedioxythiophene) nanocomposite modified electrode (2012) Electrochem. Commun., 20, pp. 1-3
  • Zhang, N., Lv, X., Ma, W., Hu, Y., Li, F., Han, D., Niu, L., Direct electron transfer of Cytochrome c at mono-dispersed and negatively charged perylene-graphene matrix (2013) Talanta, 107, pp. 195-202
  • Ding, S.F., Wei, W., Zhao, G.C., Direct electrochemical response of cytochrome c on a room temperature ionic liquid, Nbutylpyridinium tetrafluoroborate, modified electrode (2007) Electrochem. Commun., 9, pp. 2202-2206
  • Gomez-Mingot, M., Montiel, V., Banks, C.E., Iniesta, J., Screen-printed graphite macroelectrodes for the direct electron transfer of cytochrome c: A deeper study of the effect of pH on the conformational states, immobilization and peroxidase activity (2014) Analyst, 139, pp. 1442-1448
  • Cui, K., Song, Y., Guo, Q., Xu, F., Zhang, Y., Shi, Y., Wang, L., Li, Z., Architecture of electrospun carbon nanofibers-hydroxyapatite composite and its application act as a platform in biosensing (2011) Sens. Actuators, B, 160, pp. 435-440
  • Jian, S., Liu, X., Sun, H., Hou, S., The electrochemical studies of cytochrome c incorporated in 3D porous calcium alginate films on glassy carbon electrodes (2014) RSC Adv., 4, pp. 6165-6172
  • Wang, Y., Bian, X., Liao, L., Zhu, J., Guo, K., Kong, J., Liu, B., Electrochemistry and biosensing activity of cytochrome c immobilized on a mesoporous interface assembled from carbon nanospheres (2012) Microchim. Acta, 178, pp. 277-283
  • Xu, J., Li, W., Direct electrochemistry of Cytochrome c on natural nano-attapulgite clay modified electrode and its electrocatalytic reduction for H2O2 (2007) Electrochim. Acta, 52, pp. 3601-3606
  • Zhang, L., Direct electrochemistry of cytochrome c at ordered macroporous active carbon electrode (2008) Biosens. Bioelectron., 23, pp. 1610-1615
  • Zhu, L., Wang, K., Lu, T., Xing, W., Li, J., Yang, X., The direct electrochemistry behavior of Cyt c on the modified glassy carbon electrode by SBA-15 with a high-redox potential (2008) J. Mol. Catal. B: Enzym., 55, pp. 93-98
  • Sheng, Q.L., Zheng, J.B., Shang-Guan, X.D., Lin, W.H., Li, Y.Y., Liu, R.X., Direct electrochemistry and electrocatalysis of hemeproteins immobilized in porous carbon nanofiber/room-temperature ionic liquid composite film (2010) Electrochim. Acta, 55, pp. 3185-3191
  • Wang, Y., Qian, K., Guo, K., Kong, J., Marty, J.L., Yu, C., Liu, B., Electrochemistry and biosensing activity of cytochrome c immobilized in macroporous materials (2011) Microchim. Acta, 175, pp. 87-95
  • Zhou, J., Liao, C., Zhang, L., Wang, Q., Tian, Y., Molecular hydrogel-stabilized enzyme with facilitated electron transfer for determination of H2O2 released from live cells (2014) Anal. Chem., 86, pp. 4395-4401
  • Shamsipur, M., Kazemi, S.H., Mousavi, M.F., Impedance studies of a nano-structured conducting polymer and its application to the design of reliable scaffolds for impedimetric biosensors (2008) Biosens. Bioelectron., 24, pp. 104-110
  • Song, Y., Wan, L., Cui, K., Liu, L., Zhang, M., Liao, J., Wang, L., Li, Z., Direct electron transfer of cytochrome c and its biosensor based on poly(ferrocenylsilane)-DNA composite film (2011) J. Electroanal. Chem., 656, pp. 206-210
  • Akhtar, N., El-Safty, S.A., Khairy, M., El-Said, W.A., Fabrication of a highly selective nonenzymatic amperometric sensor for hydrogen peroxide based on nickel foam/cytochrome c modified electrode (2015) Sens. Actuators, B, 207, pp. 158-166
  • Santiago-Rodriguez, L., Mendez, J., Flores-Fernandez, G.M., Pagan, M., Rodriguez-Martinez, J.A., Cabrera, C.R., Griebenow, K., Enhanced stability of a nanostructured cytochrome c biosensor by PEGylation (2011) J. Electroanal. Chem., 663, pp. 1-7
  • Tammeveski, K., Tenno, T.T., Mashirin, A.A., Hillhouse, E.W., Manning, P., McNeil, C.J., Superoxide electrode based on covalently immobilized cytochrome c: Modelling studies (1998) Free Radical Biol. Med., 25, pp. 973-978
  • Ge, B., Lisdat, F., Superoxide sensor based on cytochrome c immobilized on mixed-thiol SAM with a new calibration method (2002) Anal. Chim. Acta, 454, pp. 53-64
  • Lisdat, F., Ge, B., Ehreintreich-Forster, E., Reszka, R., Scheller, F.W., Superoxide dismutase activity measurement using cytochrome cmodified electrode (1999) Anal. Chem., 71, pp. 1359-1365
  • Gaspar, S., Niculite, C., Cucu, D., Marcu, I., Effect of calcium oxalate on renal cells as revealed by real-time measurement of extracellular oxidative burst (2010) Biosens. Bioelectron., 25, pp. 1729-1734
  • Gaspar, S., David, S., Polonschii, C., Marcu, I., Gheorghiu, M., Gheorghiu, E., Simultaneous impedimetric and amperometric interrogation of renal cells exposed to a calculus-forming salt (2012) Anal. Chim. Acta, 713, pp. 115-120
  • Shleev, S., Wettero, J., Magnusson, K.E., Ruzgas, T., Simultaneous use of electrochemistry and chemiluminescence to detect reactive oxygen species produced by human neutrophils (2008) Cell. Biol. Int., 32, pp. 1486-1496
  • Cortina-Puig, M., Munoz-Berbel, X., Rouillon, R., Calas-Blanchard, C., Marty, J.L., Development of a cytochrome c-based screen-printed biosensor for the determination of the antioxidant capacity of orange juices (2009) Bioelectrochemistry, 76, pp. 76-80
  • Cortina-Puig, M., Munoz-Berbel, X., Calas-Blanchard, C., Marty, J.L., Electrochemical characterization of a superoxide biosensor based on the co-immobilization of cytochrome c and XOD on SAMmodified gold electrodes and application to garlic samples (2009) Talanta, 79, pp. 289-294
  • Chang, S.C., Pereira-Rodrigues, N., Henderson, J.R., Cole, A., Bedioui, F., McNeil, C.J., An electrochemical sensor array system for the direct, simultaneous in vitro monitoring of nitric oxide and superoxide production by cultured cells (2005) Biosens. Bioelectron., 21, pp. 917-922
  • Ganesana, M., Erlichman, J.S., Andreescu, S., Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor (2012) Free Radical Biol. Med., 53, pp. 2240-2249
  • Krylov, A.V., Adamzig, H., Walter, A.D., Lochel, B., Kurth, E., Pulz, O., Szeponik, J., Lisdat, F., Parallel generation and detection of superoxide and hydrogen peroxide in a fluidic chip (2006) Sens. Actuators, B, 119, pp. 118-126
  • Krylov, A.V., Sczech, R., Lisdat, F., Characterization of antioxidants using a fluidic chip in aqueous/organic media (2007) Analyst, 132, pp. 135-141
  • Wegerich, F., Turano, P., Allegrozzi, M., Mohwald, H., Lisdat, F., Superoxide biosensing with engineered cytochrome c (2009) Procedia Chem., 1, pp. 1287-1290
  • Wegerich, F., Giachetti, A., Allegrozzi, M., Lisdat, F., Turano, P., Mechanistic insights into the superoxide-cytochrome c reaction by lysine surface scanning (2013) JBIC, J. Biol. Inorg. Chem., 18, pp. 429-440
  • Dronov, R., Kurth, D.G., Mohwald, H., Scheller, F.W., Lisdat, F., A self-assembled cytochrome c/xanthine oxidase multilayer arrangement on gold (2007) Electrochim. Acta, 53, pp. 1107-1113
  • Guo, Z., Chen, J., Liu, H., Zhang, W., Electrochemical determination of superoxide based on cytochrome c immobilized on DDAB-modified powder microelectrode (2005) Anal. Lett., 38, pp. 2033-2043
  • Frasca, S., Graberg, T., Feng, J.J., Thomas, A., Smarsly, B., Weidinger, I., Scheller, F., Wollenberger, U., Mesoporous indium tin oxide as a novel platform for bioelectronics (2010) ChemCatChem, 2, pp. 839-845
  • Rahimi, P., Ghourchian, H., Rafiee-Pour, H.A., Superoxide radical biosensor based on a nano-composite containing cytochrome c (2011) Analyst, 136, pp. 3803-3808
  • Reddy, K.K., Gobi, V.K., Activated direct electron transfer of nanoAu bioconjugates of cytochrome c for electrocatalytic detection of trace levels of superoxide dismutase enzyme (2012) Electrochim. Acta, 78, pp. 109-114
  • Sadeghian, R.B., Han, J., Ostrovidov, S., Salehi, S., Bahraminejad, B., Ahadian, S., Chen, M., Khademhosseini, A., Macroporous mesh of nanoporous gold in electrochemical monitoring of superoxide release from skeletal muscle cells (2017) Biosens. Bioelectron., 88, pp. 41-47
  • Geng, R., Zhao, G., Liu, M., Li, M., A sandwich structured SiO2/cytochrome c/SiO2 on a boron-doped diamond film electrode as an electrochemical nitrite biosensor (2008) Biomaterials, 29, pp. 2794-2801
  • Chen, Q., Ai, S., Zhu, X., Yin, H., Ma, Q., Qiu, Y., A nitrite biosensor based on the immobilization of cytochrome c on multiwalled carbon nanotubes-PAMAM-chitosan nanocomposite modified glass carbon electrode (2009) Biosens. Bioelectron., 24, pp. 2991-2996
  • Chen, Q., Ai, S., Fan, H., Cai, J., Ma, Q., Zhu, X., Yin, H., The immobilization of cytochrome c on mwnt-pamam-chit nanocomposite incorporated with DNA biocomposite film modified glassy carbon electrode for the determination of nitrite (2010) J. Solid State Electrochem., 14, pp. 1681-1688
  • Yin, H., Zhou, Y., Liu, T., Cui, L., Ai, S., Qiu, Y., Zhu, L., Amperometric nitrite biosensor based on a gold electrode modified with cytochrome c on Nafion and Cu-Mg-Al layered double hydroxides (2010) Microchim. Acta, 171, pp. 385-392
  • Gopalan, A.I., Lee, K.P., Komathi, S., Bioelectrocatalytic determination of nitrite ions based on polyaniline grafted nanodiamond (2010) Biosens. Bioelectron., 26, pp. 1638-1643
  • Komathi, S., Gopalan, S.A., Gopalan, A.I., Lee, H.G., Yeo, H.K., Kang, S.W., Lee, K.P., Direct electrochemistry of cytochrome c with three-dimensional nanoarchitectured multicomponent composite electrode and nitrite biosensing (2016) Sens. Actuators, B, 228, pp. 737-747
  • Haldorai, Y., Hwang, S.K., Gopalan, A.I., Huh, Y.S., Han, Y.K., Voit, W., Sai-Anand, G., Lee, K.P., Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor (2016) Biosens. Bioelectron., 79, pp. 543-552
  • Liu, X., Zheng, X., Xu, Y., Li, G., Multi-step reduction of nitric oxide by cytochrome c entrapped in phosphatidylcholine films (2005) J. Mol. Catal. B: Enzym., 33, pp. 9-13
  • Liu, Y.C., Zhao, J., Wu, W.L., Yang, Z.S., Direct electrochemical behavior of cytochrome c on DNA modified glassy carbon electrode and its application to nitric oxide biosensor (2007) Electrochim. Acta, 52, pp. 4848-4852
  • Alvin Koh, W.C., Rahman, M.A., Choe, E.S., Lee, D.K., Shim, Y.B., A cytochrome c modified-conducting polymer microelectrode for monitoring in vivo changes in nitric oxide (2008) Biosens. Bioelectron., 23, pp. 1374-1381
  • Chen, H., Zhao, G., Nanocomposite of polymerized ionic liquid and graphene used as modifier for direct electrochemistry of cytochrome c and nitric oxide biosensing (2012) J. Solid State Electrochem., 16, pp. 3289-3297
  • Chen, X., Long, H.Y., Wu, W.L., Yang, Z.S., Direct electrochemical behavior of cytochrome c on sodium dodecyl sulfate modified electrode and its application to nitric oxide biosensor (2009) Thin Solid Films, 517, pp. 2787-2791
  • Wu, J.F., Xu, M.Q., Zhao, G.C., Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing (2010) Electrochem. Commun., 12, pp. 175-177
  • Fuku, X., Iftikar, F., Hess, E., Iwuoha, E., Baker, P., Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds (2012) Anal. Chim. Acta, 730, pp. 49-59
  • Shervedani, R.K., Foroushani, M.S., Direct electrochemistry of cytochrome c immobilized on gold electrode surface via Zr(IV) ion glue and its activity for ascorbic acid (2014) Bioelectrochemistry, 98, pp. 53-63
  • Bathinapatla, A., Kanchi, S., Singh, P., Sabela, M.I., Bisetty, K., An ultrasensitive performance enhanced novel cytochrome c biosensor for the detection of rebaudioside A (2016) Biosens. Bioelectron., 77, pp. 116-123
  • Madasamy, T., Santschi, C., Martin, O.J., A miniaturized electrochemical assay for homocysteine using screen-printed electrodes with cytochrome c anchored gold nanoparticles (2015) Analyst, 140, pp. 6071-6078
  • Dronov, R., Kurth, D.G., Mohwald, H., Spricigo, R., Leimkuhler, S., Wollenberger, U., Rajagopalan, K.V., Lisdat, F., Layer-by-layer arrangement by protein-protein interaction of sulfite oxidase and cytochrome catalyzing oxidation of sulfite (2008) J. Am. Chem. Soc., 130, pp. 1122-1123
  • Spricigo, R., Dronov, R., Lisdat, F., Leimkuhler, S., Scheller, F.W., Wollenberger, U., Electrocatalytic sulfite biosensor with human sulfite oxidase co-immobilized with cytochrome c in a polyelectrolytecontaining multilayer (2009) Anal. Bioanal. Chem., 393, pp. 225-233
  • Spricigo, R., Dronov, R., Rajagopalan, K.V., Lisdat, F., Leimkuhler, S., Scheller, F.W., Wollenberger, U., Electrocatalytically functional multilayer assembly of sulfite oxidase and cytochrome c (2008) Soft Matter, 4, p. 972
  • Feifel, S.C., Kapp, A., Lisdat, F., Electroactive nanobiomolecular architectures of laccase and cytochrome c on electrodes: Applying silica nanoparticles as artificial matrix (2014) Langmuir, 30, pp. 5363-5367
  • Balkenhohl, T., Adelt, S., Dronov, R., Lisdat, F., Oxygenreducing electrodes based on layer-by-layer assemblies of cytochrome c and laccasse (2008) Electrochem. Commun., 10, pp. 914-917
  • Eguilaz, M., Venegas, C.J., Gutierrez, A., Rivas, G.A., Bollo, S., Carbon nanotubes non-covalently functionalized with cytochrome c: A new bioanalytical platform for building bienzymatic biosensors (2016) Microchem. J., 128, pp. 161-165
  • Song, Y., Liu, H., Wang, Y., Wang, L., A glucose biosensor based on cytochrome c and glucose oxidase co-entrapped in chitosan-gold nanoparticles modified electrode (2013) Anal. Methods, 5, pp. 4165-4171
  • Song, Y., Liu, H., Wang, Y., Wang, L., A novel bi-protein biointerphase of cytochrome c and glucose oxidase: Electron transfer and electrocatalysis (2013) Electrochim. Acta, 93, pp. 17-24
  • Wettstein, C., Mohwald, H., Lisdat, F., Coupling of pyrroloquinoline quinone dependent glucose dehydrogenase to (cytochrome c/DNA)-multilayer systems on electrodes (2012) Bioelectrochemistry, 88, pp. 97-102
  • Wegerich, F., Turano, P., Allegrozzi, M., Mohwald, H., Lisdat, F., Electroactive multilayer assemblies of bilirubin oxidase and human cytochrome C mutants: Insight in formation and kinetic behavior (2011) Langmuir, 27, pp. 4202-4211
  • Dronov, R., Kurth, D.G., Mohwald, H., Scheller, F.W., Lisdat, F., Communication in a protein stack: Electron transfer between cytochrome c and bilirubin oxidase within a polyelectrolyte multilayer (2008) Angew. Chem., Int. Ed., 47, pp. 3000-3003
  • Dronov, R., Kurth, D.G., Scheller, F.W., Lisdat, F., Direct and cytochrome c mediated electrochemistry of bilirubin oxidase on gold (2007) Electroanalysis, 19, pp. 1642-1646
  • Feifel, S.C., Ludwig, R., Gorton, L., Lisdat, F., Catalytically active silica nanoparticle-based supramolecular architectures of two proteins-cellobiose dehydrogenase and cytochrome C on electrodes (2012) Langmuir, 28, pp. 9189-9194
  • Smutok, O.V., Dmytruk, K.V., Karkovska, M.I., Schuhmann, W., Gonchar, M.V., Sibirny, A.A., D-lactate-selective amperometric biosensor based on the cell debris of the recombinant yeast Hansenula polymorpha (2014) Talanta, 125, pp. 227-232
  • De Wael, K., Bashir, Q., Van Vlierberghe, S., Dubruel, P., Heering, H.A., Adriaens, A., Electrochemical determination of hydrogen peroxide with cytochrome c peroxidase and horse heart cytochrome c entrapped in a gelatin hydrogel (2012) Bioelectrochemistry, 83, pp. 15-18
  • Akshath, U.S., Bhatt, P., Tunneling of redox enzymes to design nano-probes for monitoring NAD+ dependent bio-catalytic activity (2016) Biosens. Bioelectron., 85, pp. 240-246
  • Li, M., Huang, S., Zhu, P., Kong, L., Peng, B., Gao, H., A novel DNA biosensor based on ssDNA/Cyt c/l-Cys/GNPs/Chits/GCE (2009) Electrochim. Acta, 54, pp. 2284-2289
  • Wu, X., Chai, Y., Zhang, P., Yuan, R., An electrochemical biosensor for sensitive detection of microRNA-155: Combining target recycling with cascade catalysis for signal amplification (2015) ACS Appl. Mater. Interfaces, 7, pp. 713-720
  • Ramanavicius, A., Ramanaviciene, A., Hemoproteins in design of biofuel cells (2009) Fuel Cells, 9, pp. 25-36
  • Yaghoubi, H., Li, Z., Jun, D., Lafalce, E., Jiang, X., Schlaf, R., Beatty, J.T., Takshi, A., Hybrid wiring of the Rhodobacter sphaeroides reaction center for applications in bio-photoelectrochemical solar cells (2014) J. Phys. Chem. C, 118, pp. 23509-23518
  • Park, Y., Jeong, S., Kim, S., Medically translatable quantum dots for biosensing and imaging (2017) J. Photochem. Photobiol., C, 30, pp. 51-70
  • Choi, S.H., Unique properties of graphene quantum dots and their applications in photonic/electronic devices (2017) J. Phys. D: Appl. Phys., 50, p. 103002
  • Li, X., Zhu, S., Xu, B., Ma, K., Zhang, J., Yang, B., Tian, W., Self-assembled graphene quantum dots induced by cytochrome c: A novel biosensor for trypsin with remarkable fluorescence enhancement (2013) Nanoscale, 5, pp. 7776-7779
  • Zhang, W., Zhang, P., Zhang, S., Zhu, C., Label-free and realtime monitoring of trypsin activity in living cells by quantum-dotbased fluorescent sensors (2014) Anal. Methods, 6, pp. 2499-2505
  • Zhang, L., Qin, H., Cui, W., Zhou, Y., Du, J., Label-free, turnon fluorescent sensor for trypsin activity assay and inhibitor screening (2016) Talanta, 161, pp. 535-540
  • Hong, M.L., Li, L.J., Han, H.X., Chu, X., A Label-free fluorescence assay for trypsin based on the electron transfer between oligonucleotide-stabilized ag nanoclusters and cytochrome c (2014) Anal. Sci., 30, pp. 811-815
  • Wu, S., Kong, X.J., Cen, Y., Yu, R.Q., Chu, X., Phosphorylation-induced formation of a cytochrome c-peptide complex: A novel fluorescent sensing platform for protein kinase assay (2016) Chem. Commun., 52, pp. 776-779
  • Koman, V.B., Santschi, C., Von Moos, N.R., Slaveykova, V.I., Martin, O.J., Portable oxidative stress sensor: Dynamic and noninvasive measurements of extracellular H2O2 released by algae (2015) Biosens. Bioelectron., 68, pp. 245-252
  • Koman, V.B., Santschi, C., Martin, O.J., Multiscatteringenhanced optical biosensor: Multiplexed, non-invasive and continuous measurements of cellular processes (2015) Biomed. Opt. Express, 6, pp. 2353-2365
  • Suarez, G., Santschi, C., Slaveykova, V.I., Martin, O.J.F., Direct anchoring of cytochrome c onto bare gold electrode for sensing oxidative stress in aquatic cells (2012) Procedia Eng., 47, pp. 1284-1286
  • Hulko, M., Hospach, I., Krasteva, N., Nelles, G., Cytochrome c biosensor-A model for gas sensing (2011) Sensors, 11, pp. 5968-5980
  • Zhang, L., Du, J., A sensitive and label-free trypsin colorimetric sensor with cytochrome c as a substrate (2016) Biosens. Bioelectron., 79, pp. 347-352
  • Hong, S., Kang, T., Oh, S., Moon, J., Choi, I., Choi, K., Yi, J., Label-free sensitive optical detection of polychlorinated biphenyl (PCB) in an aqueous solution based on surface plasmon resonance measurements (2008) Sens. Actuators, B, 134, pp. 300-306
  • Kim, Y., Park, J.Y., Kim, H.Y., Lee, M., Yi, J., Choi, I., A single nanoparticle-based sensor for hydrogen peroxide (H2O2) via cytochrome c-mediated plasmon resonance energy transfer (2015) Chem. Commun., 51, pp. 15370-15373
  • Shinoda, S., Tsukube, H., Molecular recognition of cytochrome c by designed receptors for generation of in vivo and in vitro functions (2011) Chem. Sci., 2, pp. 2301-2305
  • Rana, S., Yeh, Y.C., Rotello, V.M., Engineering the nanoparticle-protein interface: Applications and possibilities (2010) Curr. Opin. Chem. Biol., 14, pp. 828-834
  • Hirsch, A., Amphiphilic architectures based on fullerene and calixarene platforms: From buckysomes to shape-persistent micelles (2008) Pure Appl. Chem., 80, pp. 571-587
  • Li, L., Mu, Q., Zhang, B., Yan, B., Analytical strategies for detecting nanoparticle-protein interactions (2010) Analyst, 135, pp. 1519-1530
  • Minchin, R., Nanomedicine: Sizing up targets with nanoparticles (2008) Nat. Nanotechnol., 3, pp. 12-13
  • Suzumura, A., Paul, D., Sugimoto, H., Shinoda, S., Julian, R.R., Beauchamp, J.L., Teraoka, J., Tsukube, H., Cytochrome c-crown ether complexes as supramolecular catalysts: Cold-active synzymes for asymmetric sulfoxide oxidation in methanol (2005) Inorg. Chem., 44, pp. 904-910
  • Paul, D., Miyake, H., Shinoda, S., Tsukube, H., Proteodendrimers designed for complementary recognition of cytochrome c: Dendrimer architecture toward nanoscale protein complexation (2006) Chem.-Eur. J., 12, pp. 1328-1338
  • Azuma, H., Yoshida, Y., Paul, D., Shinoda, S., Tsukube, H., Nagasaki, T., Cytochrome c-binding proteo-dendrimers as new types of apoptosis inhibitors working in HeLa cell systems (2009) Org. Biomol. Chem., 7, pp. 1700-1704
  • Crowley, P.B., Ganji, P., Ibrahim, H., Protein surface recognition: Structural characterisation of cytochrome c-porphyrin complexes (2008) ChemBioChem, 9, pp. 1029-1033
  • Filby, M.H., Muldoon, J., Dabb, S., Fletcher, N.C., Ashcroft, A.E., Wilson, A.J., Protein surface recognition using geometrically pure Ru(II) tris(bipyridine) derivatives (2011) Chem. Commun., 47, pp. 559-561
  • Muldoon, J., Ashcroft, A.E., Wilson, A.J., Selective proteinsurface sensing using ruthenium(II) tris(bipyridine) complexes (2010) Chem.-Eur. J., 16, pp. 100-103
  • Wilson, A.J., Inhibition of protein-protein interactions using designed molecules (2009) Chem. Soc. Rev., 38, pp. 3289-3300
  • Perret, F., Coleman, A.W., Biochemistry of anionic calix[n]arenes (2011) Chem. Commun., 47, pp. 7303-7319
  • Perret, F., Peron, H., Dupin, M., Coleman, A.W., Calixarenes as protein sensors in topics in current chemistry (2007) Creative Chemical Sensor Systems, pp. 31-88. , 277th ed.; Schrader, T., Ed.; Springer: Berlin Heidelberg
  • Mohsin, M.A., Banica, F.G., Oshima, T., Hianik, T., Electrochemical impedance spectroscopy for assessing the recognition of cytochrome c by immobilized calixarenes (2011) Electroanalysis, 23, pp. 1229-1235
  • Prata, J.V., Barata, P.D., Fostering protein-calixarene interactions: From molecular recognition to sensing (2016) RSC Adv., 6, pp. 1659-1669
  • An, W.T., Jiao, Y., Sun, X.H., Zhang, X.L., Dong, C., Shuang, S.M., Xia, P.F., Wong, M.S., Synthesis and binding properties of carboxylphenyl-modified calix [4] arenes and cytochrome c (2009) Talanta, 79, pp. 54-61
  • Oshima, T., Higuchi, H., Ohto, K., Inoue, K., Goto, M., Selective extraction and recovery of cytochrome c by liquid-liquid extraction using a calix [6] arene carboxylic acid derivative (2005) Langmuir, 21, pp. 7280-7284
  • McGovern, R.E., Feifel, S.C., Lisdat, F., Crowley, P.B., Microscale crystals of cytochrome c and calixarene on electrodes: Interprotein electron transfer between defined sites (2015) Angew. Chem., Int. Ed., 54, pp. 6356-6359
  • Yarman, A., Dechtrirat, D., Bosserdt, M., Jetzschmann, K.J., Gajovic-Eichelmann, N., Scheller, F.W., Cytochrome c-derived hybrid systems based on moleculary imprinted polymers (2015) Electroanalysis, 27, pp. 573-586
  • Ozcan, A.A., Say, R., Denizli, A., Ersoz, A., L-histidine imprinted synthetic receptor for biochromatography applications (2006) Anal. Chem., 78, pp. 7253-7258
  • Dechtrirat, D., Jetzschmann, K.J., Stocklein, W.F., Scheller, F.W., Gajovic-Eichelmann, N., Protein rebinding to a surface-confined imprint (2012) Adv. Funct. Mater., 22, pp. 5231-5237
  • Qin, Y.P., Li, D.Y., He, X.W., Li, W.Y., Zhang, Y.K., Preparation of high-efficiency cytochrome c-imprinted polymer on the surface of magnetic carbon nanotubes by epitope approach via metal chelation and six-membered ring (2016) ACS Appl. Mater. Interfaces, 8, pp. 10155-10163
  • Bosserdt, M., Gajovic-Eichelman, N., Scheller, F.W., Modulation of direct electron transfer of cytochrome c by use of a molecularly imprinted thin film (2013) Anal. Bioanal. Chem., 405, pp. 6437-6444
  • Bueno, L., El-Sharif, H.F., Salles, M.O., Boehm, R.D., Narayan, R.J., Paixao, T.R.L.C., Reddy, S.M., MIP-based electrochemical protein profiling (2014) Sens. Actuators, B, 204, pp. 88-95
  • El Kirat, K., Bartkowski, M., Haupt, K., Probing the recognition specificity of a protein molecularly imprinted polymer using force spectroscopy (2009) Biosens. Bioelectron., 24, pp. 2618-2624
  • Guo, T., Deng, Q., Fang, G., Liu, C., Huang, X., Wang, S., Molecularly imprinted upconversion nanoparticles for highly selective and sensitive sensing of Cytochrome c (2015) Biosens. Bioelectron., 74, pp. 498-503
  • Li, D.Y., Zhang, X.M., Yan, Y.J., He, X.W., Li, W.Y., Zhang, Y.K., Thermo-sensitive imprinted polymer embedded carbon dots using epitope approach (2016) Biosens. Bioelectron., 79, pp. 187-192
  • Manickam, P., Kaushik, A., Karunakaran, C., Bhansali, S., Recent advances in cytochrome c biosensing technologies (2017) Biosens. Bioelectron., 87, pp. 654-668
  • Campos, C.B., Paim, B.A., Cosso, R.G., Castilho, R.F., Rottenberg, H., Vercesi, A.E., Method for monitoring of mitochondrial cytochrome c release during cell death: Immunodetection of cytochrome c by flow cytometry after selective permeabilization of the plasma membrane (2006) Cytometry, Part A, 69, pp. 515-523
  • Ng, H., Smith, D.J., Nagley, P., Application of flow cytometry to determine differential redistribution of cytochrome c and Smac/ DIABLO from mitochondria during cell death signaling (2012) PLoS One, 7, p. e42298
  • Liu, H., Sarnaik, S.M., Manole, M.D., Chen, Y., Shinde, S.N., Li, W., Rose, M., Clark, R.S., Increased cytochrome c in rat cerebrospinal fluid after cardiac arrest and its effects on hypoxic neuronal survival (2012) Resuscitation, 83, pp. 1491-1496
  • Pandiaraj, M., Sethy, N.K., Bhargava, K., Kameswararao, V., Karunakaran, C., Designing label-free electrochemical immunosensors for cytochrome c using nanocomposites functionalized screen printed electrodes (2014) Biosens. Bioelectron., 54, pp. 115-121
  • Wen, Q., Zhang, X., Cai, J., Yang, P.H., A novel strategy for real-time and in situ detection of cytochrome c and caspase-9 in Hela cells during apoptosis (2014) Analyst, 139, pp. 2499-2506
  • Xia, H., Mathew, B., John, T., Hegab, H., Feng, J., Microfluidic based immunosensor for detection and purification of carbonylated proteins (2013) Biomed. Microdevices, 15, pp. 519-530
  • Ocana, C., Arcay, E., Del Valle, M., Label-free impedimetric aptasensor based on epoxy-graphite electrode for the recognition of cytochrome c (2014) Sens. Actuators, B, 191, pp. 860-865
  • Ocana, C., Lukic, S., Del Valle, M., Aptamer-antibody sandwich assay for cytochrome c employing an MWCNT platform and electrochemical impedance (2015) Microchim. Acta, 182, pp. 2045-2053
  • Stepanova, V.B., Shurpik, D.N., Evtugyn, V.G., Stoikov, I.I., Evtugyn, G.A., Osin, Y.N., Hianik, T., Label-free electrochemical aptasensor for cytochrome c detection using pillar[5]arene bearing neutral red (2016) Sens. Actuators, B, 225, pp. 57-65
  • Yin, X., Cai, J., Feng, H., Wu, Z., Zou, J., Cai, Q., A novel VS2 nanosheet-based biosensor for rapid fluorescence detection of cytochrome c (2015) New J. Chem., 39, pp. 1892-1898
  • Amouzadeh Tabrizi, M., Shamsipur, M., Saber, R., Sarkar, S., Simultaneous determination of CYC and VEGF165tumor markers based on immobilization of flavin adenine dinucleotide and thionine as probes on reduced graphene oxide-poly(amidoamine)/gold nanocomposite modified dual working screen-printed electrode (2017) Sens. Actuators, B, 240, pp. 1174-1181
  • Ma, L., Liu, F., Lei, Z., Wang, Z., A novel upconversion@ polydopamine core@ shell nanoparticle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells (2017) Biosens. Bioelectron., 87, pp. 638-645
  • Loo, F.C., Ng, S.P., Wu, C.M.L., Kong, S.K., An aptasensor using DNA aptamer and white light common-path SPR spectral interferometry to detect cytochrome-c for anti-cancer drug screening (2014) Sens. Actuators, B, 198, pp. 416-423
  • Loo, J.F., Lau, P.M., Ho, H.P., Kong, S.K., An aptamer-based bio-barcode assay with isothermal recombinase polymerase amplification for cytochrome-c detection and anti-cancer drug screening (2013) Talanta, 115, pp. 159-165
  • Wang, T., Zhang, S., Mao, C., Song, J., Niu, H., Jin, B., Tian, Y., Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor (2012) Biosens. Bioelectron., 31, pp. 369-375
  • Dong, Y.P., Zhou, Y., Wang, J., Zhu, J.J., Electrogenerated chemiluminescence resonance energy transfer between lucigenin and CdSe quantum dots in the presence of bromide and its sensing application (2016) Sens. Actuators, B, 226, pp. 444-449
  • Hu, X.W., Mao, C.J., Song, J.M., Niu, H.L., Zhang, S.Y., Huang, H.P., Fabrication of GO/PANi/CdSe nanocomposites for sensitive electrochemiluminescence biosensor (2013) Biosens. Bioelectron., 41, pp. 372-378
  • Dong, Y.P., Wang, J., Peng, Y., Zhu, J.-J., Electrogenerated chemiluminescence resonance energy transfer between luminol and CdS/graphene nanocomposites and its sensing application (2016) J. Electroanal. Chem., 781, pp. 109-113
  • Pur, M.R.K., Hosseini, M., Faridbod, F., Dezfuli, A.S., Ganjali, M.R., A novel solid-state electrochemiluminescence sensor for detection of cytochrome c based on ceria nanoparticles decoratedwith reduced graphene oxide nanocomposite (2016) Anal. Bioanal. Chem., 408, pp. 7193-7202
  • Bin, N., Li, W., Yin, X., Huang, X., Cai, Q., Electrochemiluminescence aptasensor of TiO2/CdS: Mn hybrids for ultrasensitive detection of cytochrome c (2016) Talanta, 160, pp. 570-576
  • Cao, M., Cao, C., Liu, M., Wang, P., Zhu, C., Selective fluorometry of cytochrome c using glutathione-capped CdTe quantum dots in weakly basic medium (2009) Microchim. Acta, 165, pp. 341-346
  • Batra, B., Lata, S., Rani, S., Pundir, C.S., Fabrication of a cytochrome c biosensor based on cytochrome oxidase/nio-nps/ cmwcnt/pani modified au electrode (2013) J. Biomed. Nanotechnol., 9, pp. 409-416
  • Pandiaraj, M., Madasamy, T., Gollavilli, P.N., Balamurugan, M., Kotamraju, S., Rao, V.K., Bhargava, K., Karunakaran, C., Nanomaterial-based electrochemical biosensors for cytochrome c using cytochrome c reductase (2013) Bioelectrochemistry, 91, pp. 1-7
  • Pandiaraj, M., Benjamin, A.R., Madasamy, T., Vairamani, K., Arya, A., Sethy, N.K., Bhargava, K., Karunakaran, C., A cost-effective volume miniaturized and microcontroller based cytochrome c assay (2014) Sens. Actuators, A, 220, pp. 290-297
  • Ashe, D., Alleyne, T., Iwuoha, E., Serum cytochrome c detection using a cytochrome c oxidase biosensor (2007) Biotechnol. Appl. Biochem., 46, pp. 185-189
  • Yan, S., Deng, D., Li, L., Chen, Y., Song, H., Lv, Y., Glutathione modified Ag2Te nanoparticles as a resonance Rayleigh scattering sensor for highly sensitive and selective determination of cytochrome C (2016) Sens. Actuators, B, 228, pp. 458-464
  • Li, W., Qiu, Y., Zhang, L., Jiang, L., Zhou, Z., Chen, H., Zhou, J., Aluminum nanopyramid array with tunable ultraviolet-visibleinfrared wavelength plasmon resonances for rapid detection of carbohydrate antigen 199 (2016) Biosens. Bioelectron., 79, pp. 500-507
  • Shen, Y., Zhou, J., Liu, T., Tao, Y., Jiang, R., Liu, M., Xiao, G., Wang, X., Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit (2013) Nat. Commun., 4, p. 2381
  • Van Der Sneppen, L., Gooijer, C., Ubachs, W., Ariese, F., Evanescent-wave cavity ring-down detection of cytochrome c on surface-modified prisms (2009) Sens. Actuators, B, 139, pp. 505-510
  • Li, X., Liu, H., He, X., Song, Z., Determination of cytochrome C in human serum and pharmaceutical injections using flow injection chemiluminescence (2010) Appl. Biochem. Biotechnol., 160, pp. 1065-1073
  • Chen, T.T., Tian, X., Liu, C.L., Ge, J., Chu, X., Li, Y., Fluorescence activation imaging of cytochrome c released from mitochondria using aptameric nanosensor (2015) J. Am. Chem. Soc., 137, pp. 982-989
  • Davis, B.W., Niamnont, N., Hare, C.D., Sukwattanasinitt, M., Cheng, Q., Nanofibers doped with dendritic fluorophores for protein detection (2010) ACS Appl. Mater. Interfaces, 2, pp. 1798-1803
  • Dwivedi, A.K., Prasad, K.M., Trivedi, V., Iyer, P.K., Interaction of heme proteins with anionic polyfluorene: Insights into physiological effects, folding events, and inhibition activity (2012) ACS Appl. Mater. Interfaces, 4, pp. 6371-6377
  • Gu, Z., Chen, X.Y., Shen, Q.D., Ge, H.X., Xu, H.H., Hybrid nanocomposites of semiconductor nanoparticles and conjugated polyelectrolytes and their application as fluorescence biosensors (2010) Polymer, 51, pp. 902-907
  • Shamsipur, M., Molaabasi, F., Hosseinkhani, S., Rahmati, F., Detection of early stage apoptotic cells based on label-free cytochrome c assay using bioconjugated metal nanoclusters as fluorescent probes (2016) Anal. Chem., 88, pp. 2188-2197
  • Wang, G., Wang, Y., Bao, B., Dong, J., Zhang, J., Wang, L., Yang, H., Zhan, X., A carboxylic acid-functionalized polyfluorene as fluorescent probe for protein sensing (2011) J. Appl. Polym. Sci., 121, pp. 3541-3546
  • Poghossian, A., Backer, M., Mayer, D., Schoning, M.J., Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids (2015) Nanoscale, 7, pp. 1023-1031

Citas:

---------- APA ----------
Alvarez-Paggi, D., Hannibal, L., Castro, M.A., Oviedo-Rouco, S., Demicheli, V., Tórtora, V., Tomasina, F.,..., Murgida, D.H. (2017) . Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chemical Reviews, 117(21), 13382-13460.
http://dx.doi.org/10.1021/acs.chemrev.7b00257
---------- CHICAGO ----------
Alvarez-Paggi, D., Hannibal, L., Castro, M.A., Oviedo-Rouco, S., Demicheli, V., Tórtora, V., et al. "Multifunctional Cytochrome c: Learning New Tricks from an Old Dog" . Chemical Reviews 117, no. 21 (2017) : 13382-13460.
http://dx.doi.org/10.1021/acs.chemrev.7b00257
---------- MLA ----------
Alvarez-Paggi, D., Hannibal, L., Castro, M.A., Oviedo-Rouco, S., Demicheli, V., Tórtora, V., et al. "Multifunctional Cytochrome c: Learning New Tricks from an Old Dog" . Chemical Reviews, vol. 117, no. 21, 2017, pp. 13382-13460.
http://dx.doi.org/10.1021/acs.chemrev.7b00257
---------- VANCOUVER ----------
Alvarez-Paggi, D., Hannibal, L., Castro, M.A., Oviedo-Rouco, S., Demicheli, V., Tórtora, V., et al. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem. Rev. 2017;117(21):13382-13460.
http://dx.doi.org/10.1021/acs.chemrev.7b00257