Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Several series of Cr-substituted hematites with Cr:Fe molar ratio up to 0.112 were prepared by forced hydrolysis of Fe3+ solutions and by thermal dehydroxylation of Cr substituted goethites. Powder X-ray diffraction was used in order to assess the structural characteristics of the whole series. Rietveld refinement of XRD data for samples obtained by forced hydrolysis indicated that the incorporation of Cr causes anisotropic changes in the a-lattice parameter and stacking faults. In hematite samples obtained from Cr-goethites, the cell-parameters decrease with the increase in Cr-content. In all cases, the particles were multidomainic, with sizes that varied between 0.13 ± 0.02 and 1.07 ± 0.05 μm. The Morin transition was detected in substituted samples with low Cr-content, but it was no longer present in samples containing μCr ≥ 4.3 ± 0.2 (μCr = 100 × [Cr] / [Cr] + [Fe] mol mol- 1). Mössbauer spectroscopy suggested that the AF phase of Cr-hematites obtained by forced hydrolysis of Fe(III) salts, did not present parallel spin alignment along the [111] direction. These solids presented an unusually low value for TM which was ascribed to the interplay of anisotropic lattice changes, small grain sizes, metal vacancy sites and structurally bound water. All samples presented spin orientation in the (111) basal plane in the WF phase. Néel temperature variation was also explained by the concomitant contributions coming from Cr-for-Fe substitution and anisotropic lattice variations. © 2006 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Influence of the genesis on the structural and hyperfine properties of Cr-substituted hematites
Autor:Sileo, E.E.; Daroca, D.P.; Barrero, C.A.; Larralde, A.L.; Giberti, M.S.; Saragovi, C.
Filiación:INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Pabellon II, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
Unidad de Actividad Física, Comisión Nacional de Energía Atómica, Avenida Gral. Paz 1499, 1650 San Martín, Argentina
Grupo de Estado Sólido, Instituto de Física, Universidad de Antioquía, A.A.1226, Medellin, Colombia
Palabras clave:Cr-substituted hematites; Mean coherence path dimensions; Mössbauer spectroscopy; Rietveld refinement; chromium; goethite; hematite; Mossbauer spectroscopy; Rietveld analysis; X-ray diffraction
Año:2007
Volumen:238
Número:1-2
Página de inicio:84
Página de fin:93
DOI: http://dx.doi.org/10.1016/j.chemgeo.2006.10.017
Título revista:Chemical Geology
Título revista abreviado:Chem. Geol.
ISSN:00092541
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00092541_v238_n1-2_p84_Sileo

Referencias:

  • Alvarez, M., Sileo, E.E., Rueda, E.H., Effect of Mn(II) incorporation on the transformation of ferrihidrite to goethite (2005) Chem. Geol., 216, pp. 80-97
  • Alvarez, M., Rueda, E.H., Sileo, E.E., Structural characterization and chemical reactivity of synthetic Mn-goethites and hematites (2006) Chem. Geol., 231, pp. 288-299
  • Artman, J.O., Murphy, J.C., Foner, S., Magnetic anisotropy in antiferromagnetic corundum-type sesquioxides (1965) Phys. Rev., 138, pp. A912-A917
  • Baes, C.F., Mesmer, R.E., (1976) The Hydrolysis of Cations, , Wiley and Sons, New York
  • Bando, Y., Kiyama, M., Yamamoto, N., Takada, T., Shinjo, T., Takaki, H., The magnetic properties of α-Fe2O3 fine particles (1965) J. Phys. Soc. Jpn., 20, p. 2086
  • Blake, R.L., Hessevick, R.E., Zoltai, T., Finger, L.W., Refinement of the hematite structure (1966) Am. Mineral., 51, pp. 125-129
  • Blesa, M.A., Matijevic, E., Phase transformation of iron oxides, oxyhydroxides, and hydrous oxides in aqueous media (1989) Adv. Colloid Interface Sci., 29, pp. 173-221
  • Brand, R.A., (1989) NORMOS Program, IFF der KFA, Juelich, Germany
  • Brown, G., (1980) Associated Minerals, in Crystal Structures of Clay Minerals and their X-ray Identification, , Brindley G.W., and Brown G. (Eds), Mineralogical Society, London 360 pp
  • Catti, M., Valerio, G., Dovesi, R., Theoretical study of electronic, magnetic and structural properties of α-Fe2O3 (hematite) (1995) Phys. Rev., B, 51, pp. 7441-7450
  • Cornell, R.M., Schwertmann, U., (1996) The Iron Oxides. Structure, Properties, Reactions, Occurrence and Uses, , VCH, Weinheim Federal Republic of Germany
  • Cudennec, Y., Lecerf, A., Topotactic transformation of goethite and lepidocrocite into hematite and maghemite (2005) Solid State Sci., 5, pp. 520-529
  • Dang, M.Z., Rancourt, D.G., Dutrizac, J.E., Lamarche, G., Provencher, R., Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials (1998) Hyperfine Interact., 117, pp. 271-319
  • De Grave, E., Vanderberghe, R.E., Mössbauer effect study of the spin structure in natural hematites (1990) Phys. Chem. Miner., 15, pp. 344-352
  • De Grave, E., Bowen, L.H., Weed, S.B., Mössbauer study of aluminum-substituted hematites (1982) J. Magn. Magn. Mater., 27, pp. 98-108
  • Derie, R., Ghodsi, M., Calvo-Roche, C., DTA study of the dehydration of synthetic goethite α-FeOOH (1976) J. Therm. Anal., 9, pp. 435-440
  • Dollase, W.A., Corrections of intensities for preferred orientations in powder diffractometry: applications of the March Model (1986) J. Appl. Crystallogr., 19, pp. 267-272
  • Domingo Pascual, C., Rodríguez Clemente, R., Blesa, M.A., Morphological properties of α-FeOOH, γ-FeOOH and Fe3O4 obtained by oxidation of aqueous Fe(II) solutions (1994) J. Colloid Interface Sci., 165, pp. 244-252
  • Faust, S.D., Aly, O.S., (1981) Chemistry of Natural Waters, , Butterworth, Massachusetts
  • Fey, M.B., Dixon, J.B., Synthesis and properties of poorly crystalline hydrated aluminous goethites (1981) Clays Clay Miner., 29, pp. 91-100
  • Fitzpatrick, R.W., Schwertmann, U., Al-substituted goethite - an indicator of pedogenic and other weathering environment in South Africa (1982) Geoderma, 27, pp. 335-347
  • Goñi-Elizalde, S., García-Clavel, M.E., Thermal behavior in air of iron oxyhydroxides obtained from the method of homogeneous precipitation: Part I. Goethite samples of varying crystallinity (1988) Thermochim. Acta, 124, pp. 359-369
  • Grygar, T., Bezdièka, P., Dedeèek, J., Petrovský, E., Schneeweiss, O., Fe2O3-Cr2O3 system revised (2003) Ceram.-Silik., 47, pp. 32-39
  • Jonas, K., Solynar, K., Preparation, X-ray derivatographic and infrared study of aluminium-substituted goethites (1970) Acta Chim. Acad. Sci. Hung., 66, pp. 383-394
  • Kittel, C., (1996) Introduction to Solid State Physics. Seventh ed, , John Wiley and Sons Inc., New York
  • Klissurski, D.G., Bluskov, V.N., A Mössbauer study of the thermal decomposition of highly disperse α-FeOOH (1980) Mater. Chem., 5, pp. 67-71
  • Larson, A.C., Von Dreele, R.B., (1994) General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, vol. 86-748
  • Manceau, A., Gorshkov, A.I., Drits, V.A., Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part I. Information from XANES spectroscopy and electron and X-ray diffraction (1992) Am. Mineral., 77, pp. 1133-1143
  • Manceau, A., Gorshkov, A.I., Drits, V.A., Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part II. Information from EXAFS spectroscopy (1992) Am. Mineral., 77, pp. 1144-1157
  • Milton, C., Appleman, D.E., Appleman, M.H., Chao, E.C.T., Guttita, F., Dinnin, J.D., Dwornik, E.J., Rose Jr., H.J., Merumite, a complex assemblage of chromium minerals from Guyana (1976) Geol. Surv. Prof. Pap., 887
  • Moore, J.W., Ramamoorthy, S., Chromium (1984) Heavy Metals in Natural Waters, pp. 58-76. , De Santo R.S. (Ed), Springer, New York
  • Morrish, A.H., (1994) Canted Antiferromagnetism: Hematite, , World Scientific Publishing Company, Singapore
  • Rietveld, H.M., A profile refinement method for nuclear and magnetic structures (1969) J. Appl. Crystallogr., 2, pp. 65-71
  • Ruan, H.D., Gilkes, R.J., Dehydroxylation of aluminous goethite: unit cell dimensions, crystal size and surface area (1995) Clays Clay Miner., 43 (2), pp. 196-211
  • Ruan, H.D., Gilkes, R.J., Kinetics of thermal dehydroxylation of aluminous goethite (1996) J. Therm. Anal., 46, pp. 1223-1238
  • Ruan, H.D., Frost, R.L., Kloprogge, J.T., The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite (2001) Spectrochim. Acta, Part A, 57, pp. 2575-2586
  • Sawada, H., Residual electron density of chromium sesquioxide by crystal structure and scattering factor refinement (1994) Mater. Res. Bull., 29, pp. 239-245
  • Scheinost, A.C., Stanjek, H., Schulze, D.G., Gasser, U., Sparks, D.L., Structural environment and oxidation state of Mn in goethite-groutite solid-solutions (2001) Am. Mineral., 86, pp. 139-146
  • Schulze, D.G., The influence of aluminum on iron oxides. VIII: unit-cell dimensions of Al-substituted goethites and estimation of Al from them (1984) Clays Clay Miner., 32, pp. 36-44
  • Schwertmann, U., Cornell, R.M., (1991) Iron Oxides in the Laboratory, , VCH, Weinheim Chapter 10
  • Schwertmann, U., Taylor, R.M., Iron Oxides (1989) Minerals in Soils Environments, pp. 379-490. , Dixon J.B., and Weed S.B. (Eds), Soil Science Society of America, Madison, Wisconsin, USA
  • Schwertmann, U., Gasser, U., Sticher, H., Chromium-for-iron substitution in synthetic goethites (1989) Geochim. Cosmochim. Acta, 53, pp. 1293-1297
  • Sileo, E.E., Alvarez, M., Rueda, E.H., Structural studies on the manganese for iron substitution in the goethite-jacobsite system (2001) Int. J. Inorg. Mater., 3, pp. 271-279
  • Sileo, E.E., Ramos, A.Y., Magaz, G.E., Blesa, M.A., Long-range vs. short-range ordering in synthetic Cr-substituted goethites (2004) Geochim. Cosmochim. Acta, 68 (14), pp. 3053-3063
  • Singh, B.S., Gilkes, R.J., Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia (1992) J. Soil Sci., 43, pp. 77-98
  • Singh, B.S., Sherman, D.M., Gilkes, R.J., Wells, M., Mosselmans, J.F.W., Structural chemistry of Fe, Mn, and Ni synthetic hematites as determined by extended R-ray absorption fine structure spectroscopy (2000) Clays Clay Miner., 48, pp. 521-527
  • Singh, B.S., Sherman, D.M., Gilkes, R.J., Wells, M., Mosselmans, J.F.W., Incorporation of Cr, Mn and Ni into goethite (α-FeOOH): mechanism from extended X-ray absorption fine structure spectroscopy (2002) Clay Miner., 37, pp. 639-649
  • Stanjek, H., Schwertmann, U., The influence of aluminum on iron oxides. Part XVI: hydroxyl and aluminum substitution in synthetic hematites (1992) Clays Clay Miner., 40, pp. 347-354
  • Stephens, P.W., Phenomenological model of anisotropic broadening in powder diffraction (1999) J. Appl. Crystallogr., 32, pp. 281-289
  • Stiers, W., Schwertmann, U., Evidence for manganese substitution in synthetic goethite (1985) Geochim. Cosmochim. Acta, 49, pp. 1909-1911
  • Sváb, E., Krén, E., Neutron diffraction study of substituted hematite (1979) J. Magn. Magn. Mater., 14, pp. 184-186
  • Thompson, P., Cox, D.E., Hastings, J.B., Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 (1987) J. Appl. Crystallogr., 20, pp. 79-83
  • Trolard, F., Bourrie, G., Jeanroy, E., Herbillon, A.J., Martin, H., Trace metals in natural iron oxides from laterites: a study using selective kinetic extraction (1995) Geochim. Cosmochim. Acta, 59, pp. 1285-1297
  • Vandenberghe, R.E., Verbeeck, A.E., DeGrave, E., Stiers, W., 57Fe Mössbauer effect study of Mn-substituted goethite and hematite (1986) Hyperfine Interact., 29, pp. 1157-1160
  • Waychunas, G.A., Oxides Minerals (1991) Reviews in Mineralogy, 25. , Lindsley D.H. (Ed), The Mineralogical Society of America, Michigan
  • Wells, M.A., Gilkes, R.J., Fitzpatrick, R.W., Properties and acid dissolution of metal-substituted hematites (2001) Clays Clay Miner., 49, pp. 60-72
  • Wolska, E., Schwertmann, U., Selective X-ray Line broadening in the goethite-derived hematite phase (1989) Phys. Status Solidi, A Appl. Res., 114, pp. K11

Citas:

---------- APA ----------
Sileo, E.E., Daroca, D.P., Barrero, C.A., Larralde, A.L., Giberti, M.S. & Saragovi, C. (2007) . Influence of the genesis on the structural and hyperfine properties of Cr-substituted hematites. Chemical Geology, 238(1-2), 84-93.
http://dx.doi.org/10.1016/j.chemgeo.2006.10.017
---------- CHICAGO ----------
Sileo, E.E., Daroca, D.P., Barrero, C.A., Larralde, A.L., Giberti, M.S., Saragovi, C. "Influence of the genesis on the structural and hyperfine properties of Cr-substituted hematites" . Chemical Geology 238, no. 1-2 (2007) : 84-93.
http://dx.doi.org/10.1016/j.chemgeo.2006.10.017
---------- MLA ----------
Sileo, E.E., Daroca, D.P., Barrero, C.A., Larralde, A.L., Giberti, M.S., Saragovi, C. "Influence of the genesis on the structural and hyperfine properties of Cr-substituted hematites" . Chemical Geology, vol. 238, no. 1-2, 2007, pp. 84-93.
http://dx.doi.org/10.1016/j.chemgeo.2006.10.017
---------- VANCOUVER ----------
Sileo, E.E., Daroca, D.P., Barrero, C.A., Larralde, A.L., Giberti, M.S., Saragovi, C. Influence of the genesis on the structural and hyperfine properties of Cr-substituted hematites. Chem. Geol. 2007;238(1-2):84-93.
http://dx.doi.org/10.1016/j.chemgeo.2006.10.017