Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A series of Mn-substituted goethites were obtained by the addition of Mn(II) to ferrihydrite in alkaline media, at different times. The total aging period was 24 h. Chemical analysis indicated that the Mn mol fraction (χMn) remained practically constant (ca. 8 mol%) in the oxalate-ammonium non-extracted samples. In the extracted samples, the χMn values increased with the earlier addition of the Mn(II) solution to the iron-oxyhydroxide suspension. XRD patterns of the obtained solids showed that the unique phase present was goethite. Although, in most of the experiments, the Mn(II) was added when the goethite phase was already formed, variations in the unit cell parameters were observed. The changes in the cell parameters followed the trend reported for coprecipitated samples. An enlargement of the acicular crystals is in line with the higher Mn incorporation. Lattice parameters and cell volume for the extracted samples were obtained by the Rietveld simulation of XRD data. Kinetics measurements indicate that the initial dissolution rate increases with the Mn content in the goethite structure, except in the samples where Mn was added later. Dissolution-time curves show a better fit with the two-dimensional contracting geometry law than with the cubic root law, this fact is attributed to the presence of two more exposed faces, both of different reactivity, in the acicular crystals of the Mn-substituted goethite. The dissolution has also well been described by the Kabai equation. Deviation from congruence indicates an inhomogeneous distribution of Mn into the goethite crystals due to the more belated addition of Mn to the solid phase. © 2004 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Effect of Mn(II) incorporation on the transformation of ferrihydrite to goethite
Autor:Alvarez, M.; Sileo, E.E.; Rueda, E.H.
Filiación:Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, Argentina
INQUIMAE, Depto. Quim. Inorg. Anal./Quim. Fis., Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Acid kinetics; Goethite; Lattice parameters; Mn-substituted goethites; chemical composition; crystal chemistry; ferrihydrite; goethite; manganese; precipitation (chemistry)
Año:2005
Volumen:216
Número:1-2
Página de inicio:89
Página de fin:97
DOI: http://dx.doi.org/10.1016/j.chemgeo.2004.11.004
Título revista:Chemical Geology
Título revista abreviado:Chem. Geol.
ISSN:00092541
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00092541_v216_n1-2_p89_Alvarez

Referencias:

  • Barrón, V., Torrent, J., Surface hydroxyl configuration of various crystal faces of hematite and goethite (1996) J. Colloid Interface Sci., 177, pp. 407-410
  • Bernstein, L.R., Waychunas, G.A., Germanium crystal chemistry in hematite and goethite from Apex Mine, Utah, and some data on germanium in aqueous solution and in stollite (1987) Geochim. Cosmochim. Acta, 51, pp. 623-630
  • Bousserrhine, N., Gasser, U.G., Jeanroy, E., Berthelin, J., Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and Al-substituted goethites (1999) Geomicrobiol. J., 16, pp. 245-258
  • Carvalho-e-Silva, M.L., Ramos, A.Y., Tolentino, H.C., Enzweiler, J., Netto, S.M., Martin Alves, M.C., Incorporation of Ni into natural goethite: An investigation by X-ray absorption spectroscopy (2003) Am. Mineral., 88, pp. 876-882
  • Cornell, R.M., Giovanoli, R., Effect of manganese on the transformation of ferrihydrite into goethite and jacobsite in alkaline media (1987) Clays Clay Miner., 35, pp. 11-20
  • Cornell, R.M., Schwertmann, U., The iron oxides. Structure, properties, reactions, occurrence and uses (1996), p. 573. , Weinheim (Federal Republic of Germany): VCH; Cornell, R.M., Posner, A.M., Quirk, J.P., Crystal morphology and the dissolution of goethite (1974) J. Inorg. Nucl. Chem., 36, pp. 1937-1946
  • Cornell, R.M., Posner, A.M., Quirk, J.P., The complete dissolution of goethite (1975) J. Appl. Chem. Biotechnol., 25, pp. 701-706
  • Davey, B.G., Rusell, J.D., Wilson, M.J., Iron oxide and clay minerals and their relation to colours of red and yellow podzolic soils near Sydney, Australia (1975) Geoderma, 14, pp. 125-138
  • Diaz, C., Furet, N.R., Nikolaev, V.L., Rusakov, V.S., Cordeiro, M.C., Mössbauer effect study of Co, Ni, Mn and Al bearing goethites (1989) Hyperfine Interact., 46, pp. 689-693
  • Ebinger, M.H., Schulze, D.G., Mn-substituted goethite and Fe-substituted groutite synthesized at acid pH (1989) Clays Clay Miner., 37, pp. 151-156
  • Ebinger, M.H., Schulze, D.G., The influence of pH on the synthesis of mixed Fe-Mn oxide minerals (1990) Clay Miner., 25, pp. 507-518
  • Fitzpatrick, R.W., Schwertmann, U., Al-substituted goethite - An indicator of pedogenic and other weathering environment in South Africa (1982) Geoderma, 27, pp. 335-347
  • Ford, R.G., Bertsch, P.M., Farley, K.J., Changes in transition and heavy metal partitioning during hydrous iron oxide aging (1997) Environ. Sci. Technol., 31, pp. 2028-2033
  • Gasser, U.G., Nüesch, R., Singer, M.J., Jeanroy, E., Distribution of Mn in synthetic goethite (1999) Clay Miner., 34, pp. 291-299
  • Gerth, J., Unit-cell dimensions of pure and trace metal-associated goethites (1990) Geochim. Cosmochim. Acta, 54, pp. 363-371
  • Kabai, J., Determination of specific activation energies of metal oxides and metal oxide hydrates by measurement of the rate dissolution (1973) Acta Chim. Acad. Sci. Hung., 78, pp. 57-73
  • Karim, Z., Influence of transition metals on the formation of iron oxides during the oxidation of Fe(II)Cl2 solution (1984) Clays Clay Miner., 32, pp. 334-336
  • Larson, A.C., Von Dreele, R.B., GSAS. General structural analysis system (1994) Los Alamos Natl. Lab. Rep. LAUR, 86, p. 748
  • Lewis, D.G., Schwertmann, U., The influence of Al on the formation of iron oxides: Preparation of Al-goethites in M KOH (1979) Clay Miner., 14, pp. 115-126
  • Lim-Nuñez, R., Gilkes, R.J., Acid dissolution of synthetic metal containing goethites and hematites (1987), pp. 187-204. , Proceedings of the International Clay Conference, 1985 The Clay Minerals Society Bloomington, Indiana; Patrick, W.H., Jugsujinda, A., Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil (1992) Soil Sci. Soc. Am. J., 56, pp. 1071-1073
  • Rietveld, H.M., A profile refinement method for nuclear and magnetic structures (1969) J. Appl. Crystallogr., B, 25, pp. 925-946
  • Rueda, E.H., Ballesteros, M.C., Grassi, R.L., Blesa, M.A., Dithionite as dissolving reagent for goethite in the presence of EDTA and citrate. Application to soil analysis (1992) Clays Clay Miner., 40, pp. 575-585
  • Scheinhost, A.C., Stanjek, H., Schulze, D.G., Gasser, U., Sparks, D.L., Structural environment and oxidation state of Mn in goethite-groutite solid-solutions (2001) Am. Mineral., 86, pp. 139-146
  • Schulze, D.G., The influence of aluminum on iron oxides: Unit-cell dimensions of Al-substituted goethites and estimation of Al from them (1984) Clays Clay Miner., 32, pp. 36-44
  • Schwertmann, U., Solubility and dissolution of iron oxides (1991) Plant Soil, 130, pp. 1-25
  • Schwertmann, U., Gasser, U., Sticher, H., Chromium-for-iron substitution in synthetic goethites (1989) Geochim. Cosmochim. Acta, 53, pp. 1193-1197
  • Sidhu, P.S., Gilkes, R.J., Cornell, R.M., Posner, A.M., Quirk, J.P., Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids (1981) Clays Clay Miner., 29, pp. 269-276
  • Sileo, E.E., Alvarez, M., Rueda, E.H., Structural studies on the manganese for iron substitution in the goethite-jacobsite system (2001) Int. J. Inorg. Mater., 3, pp. 271-279
  • Singh, B., Gilkes, R.J., Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia (1991) J. Soil Sci., 43, pp. 77-98
  • Stiers, W., Schwertmann, U., Evidence for manganese substitution in synthetic goethite (1985) Geochim. Cosmochim. Acta, 49, pp. 1909-1911
  • Szytula, A., Burewicz, A., Dimitrijevick, Z., Krasnicki, S., Rzany, H., Todorovic, J., Neutron diffraction studies of α-FeOOH (1968) Phys. Status Solidi, 26, pp. 429-434
  • Thompson, P., Cox, D.E., Hastings, J.B., Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 (1987) J. Appl. Crystallogr., 20, pp. 79-83
  • Vandenberghe, R.E., Verbeeck, A.E., DeGrave, E., Stiers, W., 57Fe Mössbauer effect study of Mn-substituted goethite and hematite (1986) Hyperfine Interact., 29, pp. 1157-1160
  • Vempati, R.K., Morris, R.V., Lauer, H.V., Helmke, P.A., Reflectivity and other physicochemical properties of Mn-substituted goethites and hematites (1995) J. Geophys. Res., 100, pp. 3285-3295
  • Wells, M.A., Gilkes, R.J., Fitzpatrick, R.W., Properties and acid dissolution of metal-substituted hematites (2001) Clays Clay Miner., 49, pp. 60-72
  • Wolski, W., Wolska, E., Kaczmarek, J., Piszora, P., Ferrimagnetic spinels in hydrothermal and thermal treatment of MnxFe2-2x(OH)6-4x (1997) J. Therm. Anal., 48, pp. 247-258

Citas:

---------- APA ----------
Alvarez, M., Sileo, E.E. & Rueda, E.H. (2005) . Effect of Mn(II) incorporation on the transformation of ferrihydrite to goethite. Chemical Geology, 216(1-2), 89-97.
http://dx.doi.org/10.1016/j.chemgeo.2004.11.004
---------- CHICAGO ----------
Alvarez, M., Sileo, E.E., Rueda, E.H. "Effect of Mn(II) incorporation on the transformation of ferrihydrite to goethite" . Chemical Geology 216, no. 1-2 (2005) : 89-97.
http://dx.doi.org/10.1016/j.chemgeo.2004.11.004
---------- MLA ----------
Alvarez, M., Sileo, E.E., Rueda, E.H. "Effect of Mn(II) incorporation on the transformation of ferrihydrite to goethite" . Chemical Geology, vol. 216, no. 1-2, 2005, pp. 89-97.
http://dx.doi.org/10.1016/j.chemgeo.2004.11.004
---------- VANCOUVER ----------
Alvarez, M., Sileo, E.E., Rueda, E.H. Effect of Mn(II) incorporation on the transformation of ferrihydrite to goethite. Chem. Geol. 2005;216(1-2):89-97.
http://dx.doi.org/10.1016/j.chemgeo.2004.11.004