Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Despite the merits of periodic operation praised in the academic literature as one of the process intensification strategies advocated for trickle-bed reactors (TBRs), there is still reluctance to implement it in industrial practice. This can partly be ascribed to the lack of engineering data relevant to the elevated temperature and pressure characterizing industrial processes. Currently, the hydrodynamics of trickle beds under cyclic operation, especially in fast mode at elevated temperature and pressure, remains by and large terra incognita. This study proposes exploration of the hydrodynamic behavior of TBRs experiencing fast liquid flow modulation at elevated temperature and moderate pressure. The effect of temperature and pressure on the liquid holdup and pressure drop time series in terms of pulse breakthrough and decay times, pulse intensity and pulse velocity was examined for a wide range of superficial gas and liquid (base and pulse) velocities for the air-water system. The pulse breakthrough and decay times decreased, whereas the pulse velocity increased with temperature and/or pressure. The pressure drop was attenuated with increasing temperature for a given superficial gas, and base and pulse superficial liquid velocities. Experimental pulse velocity values were compared to the Giakoumakis et al. [2005. Induced pulsing in trickle beds-characteristics and attenuation of pulses. Chemical Engineering Science 60, 5183-5197] correlation which revealed that it could be relied upon at elevated temperature and close to atmospheric pressure. © 2007 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Influence of temperature on fast-mode cyclic operation hydrodynamics in trickle-bed reactors
Autor:Aydin, B.; Cassanello, M.C.; Larachi, F.
Filiación:Department of Chemical Engineering, Laval University, Que. G1K 7P4, Canada
PINMATE, Dep. Industrias, FCEyN, Int. Güiraldes 2620, C1428BGA Buenos Aires, Argentina
Palabras clave:Cyclic operation; Elevated temperature; Liquid holdup; Pressure drop; Trickle bed; Chemical reactors; Pressure drop; Pressure effects; Time series analysis; Cyclic operation; Elevated temperature; Liquid holdup; Trickle beds; Hydrodynamics; Chemical reactors; Hydrodynamics; Pressure drop; Pressure effects; Time series analysis
Año:2008
Volumen:63
Número:1
Página de inicio:141
Página de fin:152
DOI: http://dx.doi.org/10.1016/j.ces.2007.09.003
Título revista:Chemical Engineering Science
Título revista abreviado:Chem. Eng. Sci.
ISSN:00092509
CODEN:CESCA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00092509_v63_n1_p141_Aydin

Referencias:

  • Aydin, B., Larachi, F., Trickle bed hydrodynamics and flow regime transition at elevated temperature for a Newtonian and a non-Newtonian liquid (2005) Chemical Engineering Science, 60, pp. 6687-6701
  • Aydin, B., Fries, D., Lange, R., Larachi, F., Slow-mode induced pulsing in trickle-bed reactors at elevated temperature (2006) A.I.Ch.E. Journal, 52, pp. 3891-3901
  • Aydin, B., Fries, D., Lange, R., Larachi, F., Slow-mode induced pulsing in trickle beds at elevated temperature for (non-)Newtonian liquids (2007) Chemical Engineering Science, 62, pp. 5554-5557
  • Banchero, M., Manna, L., Sicardi, S., Ferri, A., Experimental investigation of fast-mode liquid modulation in a trickle-bed reactor (2004) Chemical Engineering Science, 59, pp. 4149-4154
  • Bartelmus, G., Burghardt, A., Gancarczyk, A., Jaroslawska, E., Hydrodynamics of a trickle-bed reactor operating at a liquid-induced pulsing flow (2006) Inzynieria Chemiczna i Procesowa, 27, pp. 107-123
  • Boelhouwer, J.G., Piepers, H.W., Drinkenburg, A.A.H., Advantages of forced non-steady operated trickle-bed reactors (2002) Chemical Engineering and Technology, 25, pp. 647-650
  • Boelhouwer, J.G., Piepers, H.W., Drinkenburg, A.A.H., Liquid-induced pulsing flow in trickle-bed reactors (2002) Chemical Engineering Science, 57, pp. 3387-3399
  • Boelhouwer, J.G., Piepers, H.W., Drinkenburg, A.A.H., Nature and characteristics of pulsing flow in trickle-bed reactors (2002) Chemical Engineering Science, 57, pp. 4865-4876
  • Borremans, D., Rode, S., Wild, G., Liquid flow distribution and particle-fluid heat transfer in trickle-bed reactors: the influence of periodic operation (2004) Chemical Engineering and Processing, 43, pp. 1403-1410
  • Borremans, D., Rode, S., Wild, G., Cyclic variation of the liquid flow residence time in periodically operated trickle-bed reactors (2007) Chemical Engineering Science, 62, pp. 1230-1238
  • Chou, T.S., Worley, F.J., Luss, D., Local particle-liquid mass transfer fluctuations in mixed-phase cocurrent downflow through a fixed bed in the pulsing regime (1979) Industrial and Engineering Chemistry Fundamentals, 18, pp. 279-283
  • Dudukovic, M.P., Larachi, F., Mills, P.L., Multiphase catalytic reactors: a perspective on current knowledge and future trends (2002) Catalysis Reviews, 44, pp. 123-246
  • Giakoumakis, D., Kostoglou, M., Karabelas, A.J., Induced pulsing in trickle beds-characteristics and attenuation of pulses (2005) Chemical Engineering Science, 60, pp. 5183-5197
  • Hüther, A., Geisselmann, A., Hahn, H., Prozessintensivierung-Eine Strategische Option für die Chemische Industrie (2005) Chemie Ingenieur Technik, 77, pp. 1829-1837
  • Jess, A., Popp, R., Hedden, K., Fischer-Tropsch-synthesis with nitrogen-rich syngas fundamentals and reactor design aspects (1999) Applied Catalysis A: General, 186, pp. 321-342
  • Lange, R., Gutsche, R., Hanika, J., Forced periodic operation of a trickle-bed reactor (1999) Chemical Engineering Science, 54, pp. 2569-2573
  • Larachi, F., Wild, G., Laurent, A., Midoux, N., Influence of gas density on the hydrodynamics of cocurrent gas-liquid upflow fixed bed reactors (1994) Industrial and Engineering Chemistry Research, 33, pp. 519-525
  • Liu, G., Mi, Z., Hydrogenation of 2-ethylanthraquinones in a periodically operated trickle-bed reactor (2005) Chemical Engineering and Technology, 28, pp. 857-862
  • Massa, P., Ayude, M.A., Ivorra, F., Fenoglio, R., Haure, P., Phenol oxidation in a periodically operated trickle bed reactor (2005) Catalysis Today, 107-108, pp. 630-636
  • Meyers, R.A., (1996) Handbook of Petroleum Refining Processes. second ed, , McGraw-Hill, New York, USA
  • Muzen, A., Fraguio, M.S., Cassanello, M.C., Ayude, M.A., Haure, P.M., Martinez, O.M., Clean oxidation of alcohols in a trickle-bed reactor with liquid flow modulation (2005) Industrial and Engineering Chemistry Research, 44, pp. 5275-5284
  • Stradiotto, D.A., Hudgins, R.R., Silveston, P.L., Hydrogenation of crotonaldehyde under periodic flow interruption in a trickle bed (1999) Chemical Engineering Science, 54, pp. 2561-2568
  • Trivizadakis, M.E., Karabelas, A.J., A study of local liquid/solid mass transfer in packed beds under trickling and induced pulsing flow (2006) Chemical Engineering Science, 61, pp. 7684-7696
  • Trivizadakis, M.E., Giakoumakis, D., Karabelas, A.J., Induced pulsing in trickle beds-particle shape and size effects on pulse characteristics (2006) Chemical Engineering Science, 61, pp. 7448-7462
  • Ucan, L.H., Ozkan, G., Bicer, A., Pamuk, V., Removal of sulphur dioxide in a periodically operating trickle-bed reactor with activated carbon bed (2005) Process Safety and Environmental Protection, 83, pp. 47-49
  • Wammes, W.J.A., Middelkamp, J., Huisman, W.J., deBaas, C.M., Westerterp, K.R., Hydrodynamics in a cocurrent gas-liquid trickle bed at elevated pressures (1991) A.I.Ch.E. Journal, 37, pp. 1849-1862
  • Wang, Y.-N., Xu, Y.-Y., Li, Y.-W., Zhao, Y.-L., Zhang, B.-J., Heterogeneous modeling for fixed-bed Fischer-Tropsch synthesis: reactor model and its applications (2003) Chemical Engineering Science, 58, pp. 867-875
  • Xiao, Q., Cheng, Z.M., Jiang, Z.X., Anter, A.M., Yuan, W.K., Hydrodynamic behavior of a trickle bed reactor under forced pulsing flow (2001) Chemical Engineering Science, 56, pp. 1189-1195

Citas:

---------- APA ----------
Aydin, B., Cassanello, M.C. & Larachi, F. (2008) . Influence of temperature on fast-mode cyclic operation hydrodynamics in trickle-bed reactors. Chemical Engineering Science, 63(1), 141-152.
http://dx.doi.org/10.1016/j.ces.2007.09.003
---------- CHICAGO ----------
Aydin, B., Cassanello, M.C., Larachi, F. "Influence of temperature on fast-mode cyclic operation hydrodynamics in trickle-bed reactors" . Chemical Engineering Science 63, no. 1 (2008) : 141-152.
http://dx.doi.org/10.1016/j.ces.2007.09.003
---------- MLA ----------
Aydin, B., Cassanello, M.C., Larachi, F. "Influence of temperature on fast-mode cyclic operation hydrodynamics in trickle-bed reactors" . Chemical Engineering Science, vol. 63, no. 1, 2008, pp. 141-152.
http://dx.doi.org/10.1016/j.ces.2007.09.003
---------- VANCOUVER ----------
Aydin, B., Cassanello, M.C., Larachi, F. Influence of temperature on fast-mode cyclic operation hydrodynamics in trickle-bed reactors. Chem. Eng. Sci. 2008;63(1):141-152.
http://dx.doi.org/10.1016/j.ces.2007.09.003