Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The effect of CO2 removal with CaO in the production and purification of fuel cell-grade H2 by glycerol steam reforming is studied from a thermodynamic point of view. Results obtained with the non-stoichiometric method show that CaO enables some improvements to the conventional steam reforming since four simultaneous processes take place at the same stage: H2 production, CO2 separation, CO elimination and heat supply: by separating the CO2 from the gaseous mixture, CaO also shifts the equilibrium towards the production of H2 compared to conventional reforming, and the operating temperature is lowered with respect to conventional steam reforming. The removal of CO2 not only enables higher H2 purity (close to 100% on dry basis) but reduces the amounts of CO as well. For temperatures below ca. 750K, a level lower than 20ppm (on dry basis) can be reached, thus avoiding the need of a purification stage. Since the reaction of CaO with CO2 is exothermic, the heat is supplied within the reactor. Finally, it was found that the system behavior was strongly dependent on the presence of Ca(OH)2.This four-in-one process can be a way of enhancing the efficiency of the overall system of production-purification of H2. © 2015 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis
Autor:Wess, R.; Nores-Pondal, F.; Laborde, M.; Giunta, P.
Filiación:Institute of Chemical Process Engineering, Boeblinger Str. 78, Stuttgart, 70199, Germany
Instituto de Hidrógeno y Energías Sostenibles (UBA-CONICET), Pabellón de Industrias, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Glycerol steam reforming; H2 production; Non-stoichiometric method; PEM fuel cell; Purification; Sorption-enhanced process; Fuel cells; Fuel purification; Glycerol; Proton exchange membrane fuel cells (PEMFC); Purification; Steam; Thermoanalysis; Effect of CO; Enhanced steam reforming; Gaseous mixture; Non-stoichiometric; Operating temperature; PEM fuel cell; System behaviors; Thermo dynamic analysis; Steam reforming
Año:2015
Volumen:134
Página de inicio:86
Página de fin:95
DOI: http://dx.doi.org/10.1016/j.ces.2015.04.002
Título revista:Chemical Engineering Science
Título revista abreviado:Chem. Eng. Sci.
ISSN:00092509
CODEN:CESCA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00092509_v134_n_p86_Wess

Referencias:

  • (2015) US Department of Energy, , http://www.hydrogen.energy.gov/pdfs/review10/pd003_ahmed_2010_o_web.pdf, (last accessed January 2015)
  • Barelli, L., Bidini, G., Corradetti, A., Desideri, U., Production of hydrogen through the carbonation-calcination reaction applied to CH4/CO2 mixtures (2007) Energy, 32, pp. 834-843
  • Bollini Braga, L., Silveira, J., da Silva, M., Tuna, C., Blanco Machin, E., Travieso Pedroso, D., Hydrogen production by biogas steam reforming: a technical, economic and ecological analysis (2013) Renewable Sustainable Energy Rev., 28, pp. 166-173
  • Bruschi, Y., López, E., Schbib, N., Pedernera, M., Borio, D., Theoretical study of the ethanol steam reforming in a parallel channel reactor (2012) Int. J. Hydrog. Energy, 37, pp. 14887-14894
  • Chen, H., Zhang, T., Dou, B., Dupont, V., Williams, P., Ghadiri, M., Ding, Y., Thermodynamic analyses of adsorption-enhanced steam-reforming of glycerol for hydrogen production (2009) Int. J. Hydrog. Energy, 34, pp. 7208-7222
  • (2015) Statement from Pacific Ethanol Co-Founder on Clean Fuels Program, Signed into Law By Governor Kate Brown, , http://dx.doi.org/http://cleanfuelswork.com/news/319/, (last accessed 2015)
  • Comas, J., Laborde, M., Amadeo, N., Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent (2004) J. Power Sources, 138, pp. 61-67
  • Contreras, J., Salmones, J., Colín-Luna, A., Nuño, L., Quintana, B., Córdova, I., Zeifert, B., Fuentes, G., Catalysts for H2 production using the ethanol steam reforming (A review) (2014) Int. J. Hydrog. Energy, 39, pp. 18835-18853
  • Contreras, J., Tapia, C., Fuentes, G., Nuño, L., Quintana, B., Salmones, J., Zeifert, B., Córdova, I., Equilibrium composition of ethanol steam reforming reaction to produce H2 applied to Ni, Co and Pt/hydrotalciteeWOx catalysts (2014) Int. J. Hydrog. Energy, 39, pp. 16608-16618
  • Cornaglia, C., Adrover, M., Múnera, J., Pedernera, M., Borio, D., Lombardo, E., Production of ultrapure hydrogen in a Pd-Ag membrane reactor using noble metals supported on La-Si oxides. Heterogeneous modeling for the water gas shift reaction (2013) Int. J. Hydrog. Energy, 38, pp. 10485-10493
  • Cornaglia, C., Tosti, S., Múnera, J., Lombardo, E., Optimal Pt load of a Pt/La2O3•SiO2 highly selective WGS catalyst used in a Pd-membrane reactor (2014) Appl. Catal., A: Gen., 486, pp. 85-93
  • Cunha, A., Wu, Y., Díaz Alvarado, F., Santos, J., Vaidya, P., Rodrigues, A., Steam reforming of ethanol on a Ni/Al2O3 catalyst coupled with a hydrotalcite-like sorbent in a multilayer pattern for CO2 uptake (2012) Can. J. Chem. Eng., 90, pp. 1514-1526
  • Cunha, A., Wu, Y., Li, P., Yu, J., Rodrigues, A., Sorption-enhanced steam reforming of ethanol on a novel K-Ni-Cu-hydrotalcite hybrid material (2014) Ind. Eng. Chem. Res., 53, pp. 3842-3853
  • Cunha, A., Wu, Y., Santos, J., Rodrigues, A., Sorption enhanced steam reforming of ethanol on hydrotalcite-like compounds impregnated with active copper (2013) Chem. Eng. Res. Des., 91, pp. 581-592
  • Dieuzeide, M., Amadeo, N., Thermodynamic analysis of glycerol steam reforming (2009) Chem. Eng. Technol., 33, pp. 89-96
  • Ding, Y., Alpay, E., Adsorption-enhanced steam methane reforming (2000) Chem. Eng. Sci., 55, pp. 3929-3940
  • (2015), http://www.afdc.energy.gov/data/10325, (last accessed January 2015); (2015), http://www.biofuelstp.eu/factsheets/fame-fact-sheet.html#intro, (last accessed January 2015); Faroldi, B., Bosko, M., Múnera, J., Lombardo, E., Cornaglia, L., Comparison of Ru/La2O2CO3 performance in two different membrane reactors for hydrogen production (2013) Catal. Today, 213, pp. 135-144
  • Fishtik, I., Alexander, A., Datta, R., Geana, D., A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions (2000) Int. J. Hydrog. Energy, 25, pp. 31-45
  • Fishtik, I., Datta, R., A thermodynamic approach to the systematic elucidation of unique reaction routes in catalytic reactions (2000) Chem. Eng. Sci., 55, pp. 4029-4043
  • Francesconi, J., Mussati, M., Mato, R., Aguirre, P., Analysis of the energy efficiency of an integrated ethanol processor for PEM fuel cell systems (2007) J. Power Sources, 167, pp. 151-161
  • Freitas, A., Guirardello, R., Comparison of several glycerol reforming methods for hydrogen and syngas production using Gibbs energy minimization (2014) Int. J. Hydr. En., 39, pp. 17969-17984
  • Freni, S., Cavallaro, S., Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation (1996) Int. J. Hydrog. Energy, 21, pp. 465-469
  • Freni, S., Cavallaro, S., Ethanol steam reforming in a molten carbonate fuel cell: a thermodynamic approach (1996) J. Power Sources, 62, pp. 67-73
  • García, E., Laborde, M., Hydrogen production by the steam reforming of ethanol: thermodynamic analysis (1992) Int. J. Hydrog. Energy, 16, pp. 307-312
  • Galera, S., Gutiérrez Ortiz, F., Techno-economic assessment of hydrogen and power production from supercritical water reforming of glycerol (2015) Fuel, 144, pp. 307-316
  • Graschinsky, C., Giunta, P., Amadeo, N., Laborde, M., Thermodynamic analysis of hydrogen production by autothermal reforming of ethanol (2012) Int. J. Hydrog. Energy, 37, pp. 10118-10124
  • Hajjaji, N., Baccar, I., Pons, M., Energy and energy analysis as tools for optimization of hydrogen production by glycerol autothermal reforming (2014) Renewable Energy, 71, pp. 368-380
  • (2014) Can Low Oil Prices Be Good for the Environment?, , http://dx.doi.org/http://environment.harvard.edu/news/can-low-oil-prices-be-good-environment, (last accessed March 2015)
  • Hassan, A., Paganin, V., Ticianelli, E., Pt-modified tungsten carbide as anode electrocatalyst for hydrogen oxidation in proton exchange membrane fuel cell: CO tolerance and stability (2015) Appl. Catal., B: Environ., 165, pp. 611-619
  • He, L., Berntsen, H., Chen, D., Approaching sustainable H2 production: sorption enhanced steam reforming of ethanol (2010) J. Phys. Chem. A, 114, pp. 3834-3844
  • Hedström, L., Tingelöf, T., Alvfors, P., Lindbergh, G., Experimental results from a 5kW PEM fuel cell stack operated on simulated reformate from highly diluted hydrocarbon fuels: efficiency, dilution, fuel utilisation, CO poisoning and design criteria (2009) Int. J. Hydrog. Energy, 34, pp. 1508-1514
  • Jalali-Farahani, F., Seader, J., Use of homotopy-continuation method in stability analysis of multiphase, reacting systems (2000) Comput. Chem. Eng., 24, pp. 1997-2008
  • Kavosh, M., Patchigolla, K., Anthony, E., Oakey, J., Carbonation performance of lime for cyclic CO2 capture following limestone calcination in steam/CO2 atmosphere (2014) Appl. Energy, 131, pp. 499-507
  • Kolbitsch, P., Pfeifer, C., Hofbauer, H., Catalytic steam reforming of model biogas (2008) Fuel, 87, pp. 701-706
  • Komiyama, M., Misonou, T., Takeuchi, S., Umetsu, K., Takahashi, J., Biogas as a reproducible energy source: its steam reforming for electricity generation and for farm machine fuel (2006) Int. Congr. Ser., 1293, pp. 234-237
  • Laborde, M., Abello, C., Aguirre, P., Amadeo, N., Bussi, J., Corti, H., González Suárez, E., Rodrigues, A., (2006) Producción y purificación de hidrógeno a partir de bioetanol y su aplicación en pilas de combustible, , CYTED
  • Laborde, M., Rubiera González, F., (2010) La energía del hidrógeno, , Ediciones CYTED, Buenos Aires
  • Lee, D., Baek, I., Yoon, W., Modeling and simulation for the methane steam reforming enhanced by in situ CO2 removal utilizing the CaO carbonation for H2 production (2004) Chem. Eng. Sci., 59, pp. 931-942
  • López, E., Divins, N., Anzola, A., Schbib, S., Borio, D., Llorca, J., Ethanol steam reforming for hydrogen generation over structured catalysts (2013) Int. J. Hydrog. Energy, 38, pp. 4418-4428
  • Lysikov, A., Trukhan, S., Okunev, A., Sorption enhanced hydrocarbons reforming for fuel cell powered generators (2008) Int. J. Hydrog. Energy, 33, pp. 3061-3066
  • Malins, C., Lutsey, N., Galarza, S., Shao, Z., Searle, S., Chudziak, C., van den Berg, M., (2015) Potential Low-Carbon Fuel Supply to the Pacific Coast Region of North America, , ICCT & E4Tech Report
  • Martín, M., Grossmann, I., Design of an optimal process for enhanced production of bioethanol and biodiesel from algae oil via glycerol fermentation (2014) Appl. Energy, 135, pp. 108-114
  • Mas, V., Kipreos, R., Amadeo, N., Laborde, M., Thermodynamic analysis of ethanol/water system with the stoichiometric method (2006) Int. J. Hydrog. Energy, 31, pp. 21-28
  • Múnera, J., Faroldi, B., Frutis, E., Lombardo, E., Cornaglia, L., Carrazán, S., Supported Rh nanoparticles on CaO-SiO2 binary systems for the reforming of methane by carbon dioxide in membrane reactors (2014) Appl. Catal., A: Gen., 474, pp. 114-124
  • (2015) Oil Prices: What's Behind the Drop? Simple Economics, , http://www.nytimes.com/2015/01/13/business/energy-environment/oil-prices.html?_r=0, (last accessed March 2015)
  • Nikulshina, V., Gebalda, C., Steinfeld, A., CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor (2009) Chem. Eng. J., 146, pp. 244-248
  • (2015) CME CBOT Soybean Oil Futures (BO), , http://https://www.quandl.com/#/c/futures/cme-soybean-oil-futures
  • Postole, G., Auroux, A., The poisoning level of Pt/C catalysts used in PEM fuel cells by the hydrogen feed gas impurities: the bonding strength (2011) Int. J. Hydrog. Energy, 36, pp. 6817-6825
  • (2015) Project CAESAR, , http://caesar.ecn.nl/home/, (last accessed February 2015)
  • (2015) What Does $60 Oil Mean for the Biofuel Industry?, , http://www.renewableenergyworld.com/rea/news/article/2015/01/what-does-60-oil-mean-for-the-biofuel-industry, (last accessed March 2015)
  • Ridha, F., Lu, D., Macchi, A., Hughes, R., Combined calcium looping and chemical looping combustion cycles with CaO-CuO pellets in a fixed bed reactor (2015) Fuel, 153, pp. 202-209
  • Rodríguez, N., Alonso, M., Grasa, G., Abanades, J., Heat requirements in a calciner of CaCO3 integrated in a CO2 capture system using CaO (2008) Chem. Eng. J., 138, pp. 148-154
  • Romano, S., González Suárez, E., Laborde, M., (2005) Combustibles Alternativos, Ediciones Cooperativas, , Buenos Aires
  • Salvi, B., Subramanian, K., Panwar, N., Alternative fuels for transportation vehicles: a technical review (2013) Renewable Sustainable Energy Rev., 25, pp. 404-419
  • Shiga, H., Shinda, K., Hagiwara, K., Tsutsumi, A., Sakurai, M., Yoshida, K., Bilgen, E., Large-scale hydrogen production from biogas (1998) Int. J. Hydrog. Energy, 23, pp. 631-640
  • Stanmore, B., Gilot, P., Review-calcination and carbonation of limestone during thermal cycling for CO2 sequestration (2005) Fuel Process. Technol., 86, pp. 1707-1743
  • (2014), http://dx.doi.org/http://alphanow.thomsonreuters.com/2014/12/chart-week-impact-fall-crude-oil-prices-depends-cause, Chart Of The Week: The Impact Of The Fall In Crude Oil Prices Depends On The Cause. 〈/〉 (last accessed March 2015); (2015) Monthly Commodity Futures Price Chart-Soybeans (CBOT), , http://dx.doi.org/http://futures.tradingcharts.com/chart/SB/M, (last accessed March 2015)
  • van Gerpen, J., Biodiesel processing and production (2005) Fuel Process. Technol., 86, pp. 1097-1107
  • Vasudeva, K., Mitra, N., Umasankar, P., Dhingra, S., Steam reforming of ethanol for hydrogen product ion: thermodynamic analysis (1996) Int. J. Hydrog. Energy, 21, pp. 13-18
  • Voss, C., Applications of pressure swing adsorption technology (2005) Adsorption, 11, pp. 527-529
  • Wang, X., Li, M., Li, S., Wang, H., Wang, S., Ma, X., Hydrogen production by glycerol steam reforming with/without calcium oxide sorbent: a comparative study of thermodynamic and experimental work (2010) Fuel Process. Technol., 91, pp. 1812-1818
  • Wu, Y., Díaz Alvarado, F., Santos, J., Gracia, F., Cunha, A., Rodrigues, A., Sorption-enhanced steam reforming of ethanol: thermodynamic comparison of CO2 sorbents (2012) Chem. Eng. Technol., 35, pp. 847-858
  • Wu, Y.-J., Li, P., Yu, J., Cunha, A., Rodrigues, A., Sorption-enhanced steam reforming of ethanol for continuous high-purity hydrogen production: 2D adsorptive reactor dynamics and process design (2014) Chem. Eng. Sci., 118, pp. 83-93
  • Wu, Y., Li, P., Yu, J., Cunha, A., Rodrigues, A., K-promoted hydrotalcites for CO2 capture in sorption enhanced reactions (2014) Chem. Eng. Technol., 36, pp. 567-574
  • Wu, Y., Li, P., Yu, J., Cunha, A., Rodrigues, A., Sorption-enhanced steam reforming of ethanol on NiMgAl multifunctional materials: experimental and numerical investigation (2014) Chem. Eng. J., 231, pp. 36-48
  • Yang, S., Choi, D., Jang, S., Kim, S., Choi, D.K., Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas (2008) Adsorption, 14, pp. 583-590
  • Zalc, J., Löffler, D., Fuel processing for PEM fuel cells: transport and kinetic issues of system design (2002) J. Power Sources, 111, pp. 58-64

Citas:

---------- APA ----------
Wess, R., Nores-Pondal, F., Laborde, M. & Giunta, P. (2015) . Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis. Chemical Engineering Science, 134, 86-95.
http://dx.doi.org/10.1016/j.ces.2015.04.002
---------- CHICAGO ----------
Wess, R., Nores-Pondal, F., Laborde, M., Giunta, P. "Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis" . Chemical Engineering Science 134 (2015) : 86-95.
http://dx.doi.org/10.1016/j.ces.2015.04.002
---------- MLA ----------
Wess, R., Nores-Pondal, F., Laborde, M., Giunta, P. "Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis" . Chemical Engineering Science, vol. 134, 2015, pp. 86-95.
http://dx.doi.org/10.1016/j.ces.2015.04.002
---------- VANCOUVER ----------
Wess, R., Nores-Pondal, F., Laborde, M., Giunta, P. Single stage H2 production, purification and heat supply by means of sorption-enhanced steam reforming of glycerol. A thermodynamic analysis. Chem. Eng. Sci. 2015;134:86-95.
http://dx.doi.org/10.1016/j.ces.2015.04.002