Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Tumor cells corrupt surrounding normal cells instructing them to support proliferative, pro-angiogenic and immunosuppressive networks that favor tumorigenesis and metastasis. This dynamic cross-talk is sustained by a range of intracellular signals and extracellular mediators produced by both tumoral and non-tumoral cells. Galectins –whether secreted or intracellularly expressed– play central roles in the tumorigenic process by delivering regulatory signals that contribute to reprogram fibroblasts, endothelial and immune cell programs. Through glycosylation-dependent or independent mechanisms, these endogenous lectins control a variety of cellular events leading to tumor cell proliferation, survival, migration, inflammation, angiogenesis and immune escape. Here we discuss the role of galectin-driven pathways, particularly those activated in non-tumoral stromal cells, in modulating tumor progression. © 2018 Elsevier Inc.

Registro:

Documento: Artículo
Título:Galectins: Multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment
Autor:Elola, M.T.; Ferragut, F.; Méndez-Huergo, S.P.; Croci, D.O.; Bracalente, C.; Rabinovich, G.A.
Filiación:Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro Paladini (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad de Buenos Aires, C1113, Argentina
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME–CONICET), Ciudad de Buenos Aires, C1428, Argentina
Laboratorio de InmunopatologíaInstituto de Histología y Embriología “Dr. Marío H. Burgos” (IHEM), Universidad Nacional de Cuyo, CONICET, Facultad de Exactas y Naturales, Mendoza, C5500, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, C1428 Ciudad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Endothelial cells; Fibroblasts; Galectins; Immune cells; Tumor microenvironment; ecalectin; galectin; galectin 1; galectin 3; galectin 8; transcription factor FOXP3; apoptosis; Article; cell expansion; dendritic cell; endothelium cell; fibroblast; human; immunocompetent cell; lymph vessel endothelium; macrophage; myeloid-derived suppressor cell; natural killer cell; nonhuman; priority journal; regulatory T lymphocyte; signal transduction; stroma cell; Th2 cell; tumor microenvironment; vascular endothelium
Año:2018
Volumen:333
Página de inicio:34
Página de fin:45
DOI: http://dx.doi.org/10.1016/j.cellimm.2018.03.008
Título revista:Cellular Immunology
Título revista abreviado:Cell. Immunol.
ISSN:00088749
CODEN:CLIMB
CAS:galectin 1, 258495-34-0; galectin 3, 208128-56-7; galectin 8, 220452-97-1
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00088749_v333_n_p34_Elola

Referencias:

  • Hanahan, D., Coussens, L.M., Accessories to the crime: functions of cells recruited to the tumor microenvironment (2012) Cancer Cell, 21 (3), pp. 309-322
  • Marx, J., Cancer biology. All in the stroma: cancer's Cosa Nostra (2008) Science, 320 (5872), pp. 38-41
  • Junttila, M.R., de Sauvage, F.J., Influence of tumour micro-environment heterogeneity on therapeutic response (2013) Nature, 501 (7467), pp. 346-354
  • Barondes, S.H., Castronovo, V., Cooper, D.N., Galectins: a family of animal beta-galactoside-binding lectins (1994) Cell, 76 (4), pp. 597-598
  • Yang, R.Y., Rabinovich, G.A., Liu, F.T., Galectins: structure, function and therapeutic potential (2008) Expert. Rev. Mol. Med., 10, p. e17
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer (2012) Immunity, 36 (3), pp. 322-335
  • Sundblad, V., Morosi, L.G., Geffner, J.R., Galectin-1: a jack-of-all-trades in the resolution of acute and chronic inflammation (2017) J. Immunol., 199 (11), pp. 3721-3730
  • Liu, F.T., Rabinovich, G.A., Galectins as modulators of tumour progression (2005) Nat. Rev. Cancer, 5 (1), pp. 29-41
  • Cerliani, J.P., Blidner, A.G., Toscano, M.A., Translating the ‘sugar code’ into immune and vascular signaling programs (2017) Trends Biochem. Sci., 42 (4), pp. 255-273
  • Jung, E.J., Moon, H.G., Cho, B.I., Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer (2007) Int. J. Cancer, 120 (11), pp. 2331-2338
  • Grosset, A.A., Labrie, M., Vladoiu, M.C., Galectin signatures contribute to the heterogeneity of breast cancer and provide new prognostic information and therapeutic targets (2016) Oncotarget, 7 (14), pp. 18183-18203
  • Lacina, L., Plzak, J., Kodet, O., Cancer microenvironment: What can we learn from the stem cell niche (2015) Int. J. Mol. Sci., 16 (10), pp. 24094-24110
  • Attieh, Y., Vignjevic, D.M., The hallmarks of CAFs in cancer invasion (2016) Eur. J. Cell Biol., 95 (11), pp. 493-502
  • Kuzet, S.E., Gaggioli, C., Fibroblast activation in cancer: when seed fertilizes soil (2016) Cell Tissue Res., 365 (3), pp. 607-619
  • Marsh, T., Pietras, K., McAllister, S.S., Fibroblasts as architects of cancer pathogenesis (2013) Biochim. Biophys. Acta, 1832 (7), pp. 1070-1078
  • Kalluri, R., The biology and function of fibroblasts in cancer (2016) Nat. Rev. Cancer, 16 (9), pp. 582-598
  • Xing, F., Saidou, J., Watabe, K., Cancer associated fibroblasts (CAFs) in tumor microenvironment (2010) Front. Biosci., 15, pp. 166-179
  • Quante, M., Tu, S.P., Tomita, H., Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth (2011) Cancer Cell, 19 (2), pp. 257-272
  • Sounni, N.E., Noel, A., Targeting the tumor microenvironment for cancer therapy (2013) Clin. Chem., 59 (1), pp. 85-93
  • Luga, V., Zhang, L., Viloria-Petit, A.M., Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration (2012) Cell, 151 (7), pp. 1542-1556
  • Comito, G., Giannoni, E., Di Gennaro, P., Stromal fibroblasts synergize with hypoxic oxidative stress to enhance melanoma aggressiveness (2012) Cancer Lett., 324 (1), pp. 31-41
  • Yamauchi, M., Barker, T.H., Gibbons, D.L., The fibrotic tumor stroma (2017) J. Clin. Invest., 128 (1), pp. 16-25
  • Abbott, W.M., Mellor, A., Edwards, Y., Soluble bovine galactose-binding lectin. cDNA cloning reveals the complete amino acid sequence and an antigenic relationship with the major encephalitogenic domain of myelin basic protein (1989) Biochem. J., 259 (1), pp. 283-290
  • Xu, X.C., El-Naggar, A.K., Lotan, R., Differential expression of galectin-1 and galectin-3 in thyroid tumors. Potential diagnostic implications (1995) Am. J. Pathol., 147 (3), pp. 815-822
  • Gillenwater, A., Xu, X.C., el-Naggar, A.K., Expression of galectins in head and neck squamous cell carcinoma (1996) Head Neck, 18 (5), pp. 422-432
  • Sanjuan, X., Fernandez, P.L., Castells, A., Differential expression of galectin 3 and galectin 1 in colorectal cancer progression (1997) Gastroenterology, 113 (6), pp. 1906-1915
  • van den Brule, F.A., Waltregny, D., Castronovo, V., Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients (2001) J. Pathol., 193 (1), pp. 80-87
  • van den Brule, F., Califice, S., Garnier, F., Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin (2003) Lab. Invest., 83 (3), pp. 377-386
  • Kim, H.J., Jeon, H.K., Cho, Y.J., High galectin-1 expression correlates with poor prognosis and is involved in epithelial ovarian cancer proliferation and invasion (2012) Eur. J. Cancer, 48 (12), pp. 1914-1921
  • Valach, J., Fik, Z., Strnad, H., Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: increased expression of galectin-1 and induction of poor prognosis factors (2012) Int. J. Cancer, 131 (11), pp. 2499-2508
  • Wu, M.H., Hong, H.C., Hong, T.M., Targeting galectin-1 in carcinoma-associated fibroblasts inhibits oral squamous cell carcinoma metastasis by downregulating MCP-1/CCL2 expression (2011) Clin. Cancer Res., 17 (6), pp. 1306-1316
  • Kolar, M., Szabo, P., Dvorankova, B., Upregulation of IL-6, IL-8 and CXCL-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: Immunohistochemical and transcriptomic analyses (2012) Biol. Cell, 104 (12), pp. 738-751
  • He, X.J., Tao, H.Q., Hu, Z.M., Expression of galectin-1 in carcinoma-associated fibroblasts promotes gastric cancer cell invasion through upregulation of integrin beta1 (2014) Cancer Sci., 105 (11), pp. 1402-1410
  • Zheng, L., Xu, C., Guan, Z., Galectin-1 mediates TGF-beta-induced transformation from normal fibroblasts into carcinoma-associated fibroblasts and promotes tumor progression in gastric cancer (2016) Am. J. Transl. Res., 8 (4), pp. 1641-1658
  • Berberat, P.O., Friess, H., Wang, L., Comparative analysis of galectins in primary tumors and tumor metastasis in human pancreatic cancer (2001) J. Histochem. Cytochem., 49 (4), pp. 539-549
  • Masamune, A., Satoh, M., Hirabayashi, J., Galectin-1 induces chemokine production and proliferation in pancreatic stellate cells (2006) Am. J. Physiol. Gastrointest. Liver Physiol., 290 (4), pp. G729-736
  • Fitzner, B., Walzel, H., Sparmann, G., Galectin-1 is an inductor of pancreatic stellate cell activation (2005) Cell. Signal., 17 (10), pp. 1240-1247
  • Xue, X., Lu, Z., Tang, D., Galectin-1 secreted by activated stellate cells in pancreatic ductal adenocarcinoma stroma promotes proliferation and invasion of pancreatic cancer cells: an in vitro study on the microenvironment of pancreatic ductal adenocarcinoma (2011) Pancreas, 40 (6), pp. 832-839
  • Tang, D., Zhang, J., Yuan, Z., Pancreatic satellite cells derived galectin-1 increase the progression and less survival of pancreatic ductal adenocarcinoma (2014) PLoS One, 9 (3), p. e90476
  • Martinez-Bosch, N., Fernandez-Barrena, M.G., Moreno, M., Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation (2014) Cancer Res., 74 (13), pp. 3512-3524
  • Kristensen, D.B., Kawada, N., Imamura, K., Proteome analysis of rat hepatic stellate cells (2000) Hepatology, 32 (2), pp. 268-277
  • Maeda, N., Kawada, N., Seki, S., Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways (2003) J. Biol. Chem., 278 (21), pp. 18938-18944
  • Folgueira, M.A., Maistro, S., Katayama, M.L., Markers of breast cancer stromal fibroblasts in the primary tumour site associated with lymph node metastasis: a systematic review including our case series (2013) Biosci. Rep., 33 (6), pp. 921-929
  • Zhu, X., Wang, K., Zhang, K., Galectin-1 knockdown in carcinoma-associated fibroblasts inhibits migration and invasion of human MDA-MB-231 breast cancer cells by modulating MMP-9 expression (2016) Acta Biochim. Biophys. Sin. (Shanghai), 48 (5), pp. 462-467
  • Lim, M.J., Ahn, J., Yi, J.Y., Induction of galectin-1 by TGF-beta1 accelerates fibrosis through enhancing nuclear retention of Smad2 (2014) Exp. Cell Res., 326 (1), pp. 125-135
  • Moutsatsos, I.K., Wade, M., Schindler, M., Endogenous lectins from cultured cells: nuclear localization of carbohydrate-binding protein 35 in proliferating 3T3 fibroblasts (1987) Proc. Natl. Acad. Sci. U.S.A., 84 (18), pp. 6452-6456
  • Hamann, K.K., Cowles, E.A., Wang, J.L., Expression of carbohydrate binding protein 35 in human fibroblasts: variations in the levels of mRNA, protein, and isoelectric species as a function of replicative competence (1991) Exp. Cell Res., 196 (1), pp. 82-91
  • Tsay, Y.G., Lin, N.Y., Voss, P.G., Export of galectin-3 from nuclei of digitonin-permeabilized mouse 3T3 fibroblasts (1999) Exp. Cell Res., 252 (2), pp. 250-261
  • Openo, K.P., Kadrofske, M.M., Patterson, R.J., Galectin-3 expression and subcellular localization in senescent human fibroblasts (2000) Exp. Cell Res., 255 (2), pp. 278-290
  • Alkasalias, T., Flaberg, E., Kashuba, V., Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent (2014) Proc. Natl. Acad. Sci. U.S.A., 111 (48), pp. 17188-17193
  • Tadokoro, T., Ikekita, M., Toda, T., Involvement of Galectin-3 with vascular cell adhesion molecule-1 in growth regulation of mouse BALB/3T3 cells (2009) J. Biol. Chem., 284 (51), pp. 35556-35563
  • Kim, S.J., Lee, H.W., Gu Kang, H., Ablation of galectin-3 induces p27(KIP1)-dependent premature senescence without oncogenic stress (2014) Cell Death Differ., 21 (11), pp. 1769-1779
  • Henderson, N.C., Mackinnon, A.C., Farnworth, S.L., Galectin-3 regulates myofibroblast activation and hepatic fibrosis (2006) Proc. Natl. Acad. Sci. U.S.A., 103 (13), pp. 5060-5065
  • Henderson, N.C., Sethi, T., The regulation of inflammation by galectin-3 (2009) Immunol. Rev., 230 (1), pp. 160-171
  • Mackinnon, A.C., Gibbons, M.A., Farnworth, S.L., Regulation of transforming growth factor-beta1-driven lung fibrosis by galectin-3 (2012) Am. J. Respir. Crit. Care Med., 185 (5), pp. 537-546
  • Lippert, E., Falk, W., Bataille, F., Soluble galectin-3 is a strong, colonic epithelial-cell-derived, lamina propria fibroblast-stimulating factor (2007) Gut, 56 (1), pp. 43-51
  • Lippert, E., Gunckel, M., Brenmoehl, J., Regulation of galectin-3 function in mucosal fibroblasts: potential role in mucosal inflammation (2008) Clin. Exp. Immunol., 152 (2), pp. 285-297
  • Filer, A., Bik, M., Parsonage, G.N., Galectin 3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways (2009) Arthritis Rheum., 60 (6), pp. 1604-1614
  • Sharma, U.C., Pokharel, S., van Brakel, T.J., Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction (2004) Circulation, 110 (19), pp. 3121-3128
  • Chen, W.S., Cao, Z., Leffler, H., Galectin-3 inhibition by a small-molecule inhibitor reduces both pathological corneal neovascularization and fibrosis (2017) Invest. Ophthalmol. Vis. Sci., 58 (1), pp. 9-20
  • Raz, A., Zhu, D.G., Hogan, V., Evidence for the role of 34-kDa galactoside-binding lectin in transformation and metastasis (1990) Int. J. Cancer, 46 (5), pp. 871-877
  • Dvorankova, B., Szabo, P., Lacina, L., Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: potential application in tissue engineering and wound repair (2011) Cells Tissues Organs, 194 (6), pp. 469-480
  • Nangia-Makker, P., Balan, V., Raz, A., Regulation of tumor progression by extracellular galectin-3 (2008) Cancer Microenviron., 1 (1), pp. 43-51
  • Fortuna-Costa, A., Gomes, A.M., Kozlowski, E.O., Extracellular galectin-3 in tumor progression and metastasis (2014) Front. Oncol., 4, p. 138
  • Logullo, A.F., Lopes, A.B., Nonogaki, S., C-erbB-2 expression is a better predictor for survival than galectin-3 or p53 in early-stage breast cancer (2007) Oncol. Rep., 18 (1), pp. 121-126
  • Moisa, A., Fritz, P., Eck, A., Growth/adhesion-regulatory tissue lectin galectin-3: stromal presence but not cytoplasmic/nuclear expression in tumor cells as a negative prognostic factor in breast cancer (2007) Anticancer Res., 27 (4B), pp. 2131-2139
  • Vanderstraeten, A., Luyten, C., Verbist, G., Mapping the immunosuppressive environment in uterine tumors: implications for immunotherapy (2014) Cancer Immunol. Immunother., 63 (6), pp. 545-557
  • Takano, T., Miyauchi, A., Matsuzuka, F., Ubiquitous expression of galectin-3 mRNA in benign and malignant thyroid tumors (2003) Cancer Lett., 199 (1), pp. 69-73
  • Estofolete, C.F., Zucoloto, S., Oliani, S.M., Myenteric denervation downregulates galectin-1 and -3 expression in gastric carcinogenesis (2011) Dig. Dis. Sci., 56 (6), pp. 1637-1644
  • La, S.H., Kim, S.J., Kang, H.G., Ablation of human telomerase reverse transcriptase (hTERT) induces cellular senescence in gastric cancer through a galectin-3 dependent mechanism (2016) Oncotarget, 7 (35), pp. 57117-57130
  • Greijer, A.E., van der Groep, P., Kemming, D., Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1) (2005) J. Pathol., 206 (3), pp. 291-304
  • Zeng, Y., Danielson, K.G., Albert, T.J., HIF-1 alpha is a regulator of galectin-3 expression in the intervertebral disc (2007) J. Bone. Miner. Res., 22 (12), pp. 1851-1861
  • Levy, R., Biran, A., Poirier, F., Galectin-3 mediates cross-talk between K-Ras and Let-7c tumor suppressor microRNA (2011) PLoS One, 6 (11), p. e27490
  • Thijssen, V.L., Rabinovich, G.A., Griffioen, A.W., Vascular galectins: regulators of tumor progression and targets for cancer therapy (2013) Cytokine Growth Factor Rev., 24 (6), pp. 547-558
  • Baum, L.G., Seilhamer, J.J., Pang, M., Synthesis of an endogeneous lectin, galectin-1, by human endothelial cells is up-regulated by endothelial cell activation (1995) Glycoconj. J., 12 (1), pp. 63-68
  • Thijssen, V.L., Hulsmans, S., Griffioen, A.W., The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells (2008) Am. J. Pathol., 172 (2), pp. 545-553
  • Thijssen, V.L., Postel, R., Brandwijk, R.J., Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy (2006) Proc. Natl. Acad. Sci. U.S.A., 103 (43), pp. 15975-15980
  • Clausse, N., van den Brule, F., Waltregny, D., Galectin-1 expression in prostate tumor-associated capillary endothelial cells is increased by prostate carcinoma cells and modulates heterotypic cell-cell adhesion (1999) Angiogenesis, 3 (4), pp. 317-325
  • Hsieh, S.H., Ying, N.W., Wu, M.H., Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells (2008) Oncogene, 27 (26), pp. 3746-3753
  • Croci, D.O., Salatino, M., Rubinstein, N., Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma (2012) J. Exp. Med., 209 (11), pp. 1985-2000
  • Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156 (4), pp. 744-758
  • Thijssen, V.L., Barkan, B., Shoji, H., Tumor cells secrete galectin-1 to enhance endothelial cell activity (2010) Cancer Res., 70 (15), pp. 6216-6224
  • Zhao, X.Y., Zhao, K.W., Jiang, Y., Synergistic induction of galectin-1 by CCAAT/enhancer binding protein alpha and hypoxia-inducible factor 1alpha and its role in differentiation of acute myeloid leukemic cells (2011) J. Biol. Chem., 286 (42), pp. 36808-36819
  • White, N.M., Masui, O., Newsted, D., Galectin-1 has potential prognostic significance and is implicated in clear cell renal cell carcinoma progression through the HIF/mTOR signaling axis (2014) Br. J. Cancer, 110 (5), pp. 1250-1259
  • Laderach, D.J., Gentilini, L.D., Giribaldi, L., A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease (2013) Cancer Res., 73 (1), pp. 86-96
  • D'Haene, N., Sauvage, S., Maris, C., VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis (2013) PLoS One, 8 (6), p. e67029
  • Williams, S.P., Odell, A.F., Karnezis, T., Genome-wide functional analysis reveals central signaling regulators of lymphatic endothelial cell migration and remodeling (2017) Sci. Signal., 10 (499)
  • Nangia-Makker, P., Honjo, Y., Sarvis, R., Galectin-3 induces endothelial cell morphogenesis and angiogenesis (2000) Am. J. Pathol., 156 (3), pp. 899-909
  • Yang, E., Shim, J.S., Woo, H.J., Aminopeptidase N/CD13 induces angiogenesis through interaction with a pro-angiogenic protein, galectin-3 (2007) Biochem. Biophys. Res. Commun., 363 (2), pp. 336-341
  • Markowska, A.I., Liu, F.T., Panjwani, N., Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response (2010) J. Exp. Med., 207 (9), pp. 1981-1993
  • Markowska, A.I., Jefferies, K.C., Panjwani, N., Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells (2011) J. Biol. Chem., 286 (34), pp. 29913-29921
  • Delgado, V.M., Nugnes, L.G., Colombo, L.L., Modulation of endothelial cell migration and angiogenesis: a novel function for the “tandem-repeat” lectin galectin-8 (2011) FASEB J., 25 (1), pp. 242-254
  • Cueni, L.N., Detmar, M., Galectin-8 interacts with podoplanin and modulates lymphatic endothelial cell functions (2009) Exp. Cell Res., 315 (10), pp. 1715-1723
  • Chen, W.S., Cao, Z., Sugaya, S., Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3 (2016) Nat. Commun., 7, p. 11302
  • Mendez-Huergo, S.P., Blidner, A.G., Rabinovich, G.A., Galectins: emerging regulatory checkpoints linking tumor immunity and angiogenesis (2017) Curr. Opin. Immunol., 45, pp. 8-15
  • Rabinovich, G.A., Conejo-Garcia, J.R., Shaping the immune landscape in cancer by galectin-driven regulatory pathways (2016) J. Mol. Biol., 428 (16), pp. 3266-3281
  • Rubinstein, N., Alvarez, M., Zwirner, N.W., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection. A potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5 (3), pp. 241-251
  • Le, Q.T., Shi, G., Cao, H., Galectin-1: a link between tumor hypoxia and tumor immune privilege (2005) J. Clin. Oncol., 23 (35), pp. 8932-8941
  • Soldati, R., Berger, E., Zenclussen, A.C., Neuroblastoma triggers an immunoevasive program involving galectin-1-dependent modulation of T cell and dendritic cell compartments (2012) Int. J. Cancer, 131 (5), pp. 1131-1141
  • Banh, A., Zhang, J., Cao, H., Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis (2011) Cancer Res., 71 (13), pp. 4423-4431
  • Tang, D., Yuan, Z., Xue, X., High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer (2012) Int. J. Cancer, 130 (10), pp. 2337-2348
  • Toscano, M.A., Bianco, G.A., Ilarregui, J.M., Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death (2007) Nat. Immunol., 8 (8), pp. 825-834
  • Blidner, A.G., Mendez-Huergo, S.P., Cagnoni, A.J., Re-wiring regulatory cell networks in immunity by galectin-glycan interactions (2015) FEBS Lett., 589 (22), pp. 3407-3418
  • Sugimoto, N., Oida, T., Hirota, K., Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis (2006) Int. Immunol., 18 (8), pp. 1197-1209
  • Garin, M.I., Chu, C.C., Golshayan, D., Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells (2007) Blood, 109 (5), pp. 2058-2065
  • Dalotto-Moreno, T., Croci, D.O., Cerliani, J.P., Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease (2012) Cancer Res., 73 (3), pp. 1107-1117
  • Juszczynski, P., Ouyang, J., Monti, S., The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc. Natl. Acad. Sci. U.S.A., 104 (32), pp. 13134-13139
  • Rodig, S.J., Ouyang, J., Juszczynski, P., AP1-dependent galectin-1 expression delineates classical hodgkin and anaplastic large cell lymphomas from other lymphoid malignancies with shared molecular features (2008) Clin. Cancer Res., 14 (11), pp. 3338-3344
  • Cedeno-Laurent, F., Opperman, M., Barthel, S.R., Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression (2012) J. Immunol., 188 (7), pp. 3127-3137
  • Ilarregui, J.M., Croci, D.O., Bianco, G.A., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat. Immunol., 10 (9), pp. 981-991
  • Kuo, P.L., Hung, J.Y., Huang, S.K., Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway (2011) J. Immunol., 186 (3), pp. 1521-1530
  • Tesone, A.J., Rutkowski, M.R., Brencicova, E., Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells (2016) Cell Rep., 14 (7), pp. 1774-1786
  • Hsu, Y.L., Hung, J.Y., Chiang, S.Y., Lung cancer-derived galectin-1 contributes to cancer associated fibroblast-mediated cancer progression and immune suppression through TDO2/kynurenine axis (2016) Oncotarget, 7 (19), pp. 27584-27598
  • Ouyang, J., Juszczynski, P., Rodig, S.J., Viral induction and targeted inhibition of galectin-1 in EBV+ posttransplant lymphoproliferative disorders (2011) Blood, 117 (16), pp. 4315-4322
  • Baker, G.J., Chockley, P., Yadav, V.N., Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity (2014) Cancer Res., 74 (18), pp. 5079-5090
  • Baker, G.J., Chockley, P., Zamler, D., Natural killer cells require monocytic Gr-1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells (2016) Oncoimmunology, 5 (6), p. e1163461
  • Correa, S.G., Sotomayor, C.E., Aoki, M.P., Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages (2003) Glycobiology, 13 (2), pp. 119-128
  • Barrionuevo, P., Beigier-Bompadre, M., Ilarregui, J.M., A novel function for galectin-1 at the crossroad of innate and adaptive immunity: galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway (2007) J. Immunol., 178 (1), pp. 436-445
  • Rostoker, R., Yaseen, H., Schif-Zuck, S., Galectin-1 induces 12/15-lipoxygenase expression in murine macrophages and favors their conversion toward a pro-resolving phenotype (2013) Prostaglandins Other Lipid Mediat., 107, pp. 85-94
  • Verschuere, T., Toelen, J., Maes, W., Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity (2014) Int. J. Cancer, 134 (4), pp. 873-884
  • Starossom, S.C., Mascanfroni, I.D., Imitola, J., Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration (2012) Immunity, 37 (2), pp. 249-263
  • Van Woensel, M., Mathivet, T., Wauthoz, N., Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy (2017) Sci. Rep., 7 (1), p. 1217
  • Andersen, M.N., Ludvigsen, M., Abildgaard, N., Serum galectin-1 in patients with multiple myeloma: associations with survival, angiogenesis, and biomarkers of macrophage activation (2017) Onco. Targets Ther., 10, pp. 1977-1982
  • Schupp, J., Krebs, F.K., Zimmer, N., Targeting myeloid cells in the tumor sustaining microenvironment (2017) Cell Immunol.
  • Blidner, A.G., Salatino, M., Mascanfroni, I.D., Differential response of myeloid-derived suppressor cells to the nonsteroidal anti-inflammatory agent indomethacin in tumor-associated and tumor-free microenvironments (2015) J. Immunol., 194 (7), pp. 3452-3462
  • Rutkowski, M.R., Stephen, T.L., Svoronos, N., Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation (2015) Cancer Cell, 27 (1), pp. 27-40
  • Croci, D.O., Morande, P.E., Dergan-Dylon, S., Nurse-like cells control the activity of chronic lymphocytic leukemia B cells via galectin-1 (2013) Leukemia, 27 (6), pp. 1413-1416
  • Fukumori, T., Takenaka, Y., Yoshii, T., CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis (2003) Cancer Res., 63 (23), pp. 8302-8311
  • Hsu, D.K., Chen, H.Y., Liu, F.T., Galectin-3 regulates T-cell functions (2009) Immunol. Rev., 230 (1), pp. 114-127
  • Peng, W., Wang, H.Y., Miyahara, Y., Tumor-associated galectin-3 modulates the function of tumor-reactive T cells (2008) Cancer Res., 68 (17), pp. 7228-7236
  • Guha, P., Kaptan, E., Bandyopadhyaya, G., Cod glycopeptide with picomolar affinity to galectin-3 suppresses T-cell apoptosis and prostate cancer metastasis (2013) Proc. Natl. Acad. Sci. U.S.A., 110 (13), pp. 5052-5057
  • Demotte, N., Stroobant, V., Courtoy, P.J., Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes (2008) Immunity, 28 (3), pp. 414-424
  • Demotte, N., Wieers, G., Van Der Smissen, P., A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice (2010) Cancer Res., 70 (19), pp. 7476-7488
  • Gordon-Alonso, M., Hirsch, T., Wildmann, C., Galectin-3 captures interferon-gamma in the tumor matrix reducing chemokine gradient production and T-cell tumor infiltration (2017) Nat. Commun., 8 (1), p. 793
  • Kouo, T., Huang, L., Pucsek, A.B., Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells (2015) Cancer Immunol. Res., 3 (4), pp. 412-423
  • Sakuishi, K., Jayaraman, P., Behar, S.M., Emerging Tim-3 functions in antimicrobial and tumor immunity (2011) Trends Immunol., 32 (8), pp. 345-349
  • Weber, M., Buttner-Herold, M., Distel, L., Galectin 3 expression in primary oral squamous cell carcinomas (2017) BMC Cancer, 17 (1), p. 906
  • Radosavljevic, G., Jovanovic, I., Majstorovic, I., Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity (2011) Clin. Exp. Metastasis, 28 (5), pp. 451-462
  • Tsuboi, S., Sutoh, M., Hatakeyama, S., A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans (2011) Embo. J., 30 (15), pp. 3173-3185
  • Wang, W., Guo, H., Geng, J., Tumor-released Galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack (2014) J. Biol. Chem., 289 (48), pp. 33311-33319
  • Molinero, L.L., Fuertes, M.B., Rabinovich, G.A., Activation-induced expression of MICA on T lymphocytes involves engagement of CD3 and CD28 (2002) J. Leukoc. Biol., 71 (5), pp. 791-797
  • Sampson, J.F., Suryawanshi, A., Chen, W.S., Galectin-8 promotes regulatory T-cell differentiation by modulating IL-2 and TGFbeta signaling (2016) Immunol. Cell Biol., 94 (2), p. 220
  • Levy, Y., Ronen, D., Bershadsky, A.D., Sustained induction of ERK, protein kinase B, and p70 S6 kinase regulates cell spreading and formation of F-actin microspikes upon ligation of integrins by galectin-8, a mammalian lectin (2003) J. Biol. Chem., 278 (16), pp. 14533-14542
  • Dardalhon, V., Anderson, A.C., Karman, J., Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells (2010) J. Immunol., 185 (3), pp. 1383-1392
  • Wu, C., Thalhamer, T., Franca, R.F., Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells (2014) Immunity, 41 (2), pp. 270-282
  • Daley, D., Mani, V.R., Mohan, N., Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance (2017) Nat. Med., 23 (5), pp. 556-567
  • Klover, P.J., Thangapazham, R.L., Kato, J., Tsc2 disruption in mesenchymal progenitors results in tumors with vascular anomalies overexpressing Lgals3 (2017) Elife, 6, p. e23202
  • Rabinovich, G.A., Cumashi, A., Bianco, G.A., Synthetic lactulose amines: novel class of anticancer agents that induce tumor-cell apoptosis and inhibit galectin-mediated homotypic cell aggregation and endothelial cell morphogenesis (2006) Glycobiology, 16 (3), pp. 210-220
  • Oberg, C.T., Leffler, H., Nilsson, U.J., Inhibition of galectins with small molecules (2011) Chimia (Aarau), 65 (1-2), pp. 18-23
  • van Hattum, H., Branderhorst, H.M., Moret, E.E., Tuning the preference of thiodigalactoside- and lactosamine-based ligands to galectin-3 over galectin-1 (2013) J. Med. Chem., 56 (3), pp. 1350-1354
  • Delaine, T., Collins, P., MacKinnon, A., Galectin-3-binding glycomimetics that strongly reduce bleomycin-induced lung fibrosis and modulate intracellular glycan recognition (2016) Chembiochem., 17 (18), pp. 1759-1770
  • Zetterberg, F.R., Peterson, K., Johnsson, R.E., Monosaccharide derivatives with low-nanomolar lectin affinity and high selectivity based on combined fluorine-amide, phenyl-arginine, sulfur-pi, and halogen bond interactions (2018) ChemMedChem, 13 (2), pp. 133-137
  • Zhang, H., Laaf, D., Elling, L., Thiodigalactoside-bovine serum albumin conjugates as high-potency inhibitors of galectin-3: an outstanding example of multivalent presentation of small molecule inhibitors (2018) Bioconjug. Chem.
  • Nangia-Makker, P., Hogan, V., Honjo, Y., Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin (2002) J. Natl. Cancer Inst., 94 (24), pp. 1854-1862
  • Glinsky, V.V., Raz, A., Modified citrus pectin anti-metastatic properties: one bullet, multiple targets (2009) Carbohydr. Res., 344 (14), pp. 1788-1791
  • Stegmayr, J., Lepur, A., Kahl-Knutson, B., Low or no inhibitory potency of the canonical galectin carbohydrate-binding site by pectins and galactomannans (2016) J. Biol. Chem., 291 (25), pp. 13318-13334
  • Griffioen, A.W., van der Schaft, D.W., Barendsz-Janson, A.F., Anginex, a designed peptide that inhibits angiogenesis (2001) Biochem. J., 354, pp. 233-242
  • Mayo, K.H., Dings, R.P., Flader, C., Design of a partial peptide mimetic of anginex with antiangiogenic and anticancer activity (2003) J. Biol. Chem., 278 (46), pp. 45746-45752
  • Astorgues-Xerri, L., Riveiro, M.E., Tijeras-Raballand, A., OTX008, a selective small-molecule inhibitor of galectin-1, downregulates cancer cell proliferation, invasion and tumour angiogenesis (2014) Eur. J. Cancer, 50 (14), pp. 2463-2477
  • Lappchen, T., Dings, R.P., Rossin, R., Novel analogs of antitumor agent calixarene 0118: Synthesis, cytotoxicity, click labeling with 2-[18F]fluoroethylazide, and in vivo evaluation (2015) Eur. J. Med. Chem., 89, pp. 279-295

Citas:

---------- APA ----------
Elola, M.T., Ferragut, F., Méndez-Huergo, S.P., Croci, D.O., Bracalente, C. & Rabinovich, G.A. (2018) . Galectins: Multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment. Cellular Immunology, 333, 34-45.
http://dx.doi.org/10.1016/j.cellimm.2018.03.008
---------- CHICAGO ----------
Elola, M.T., Ferragut, F., Méndez-Huergo, S.P., Croci, D.O., Bracalente, C., Rabinovich, G.A. "Galectins: Multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment" . Cellular Immunology 333 (2018) : 34-45.
http://dx.doi.org/10.1016/j.cellimm.2018.03.008
---------- MLA ----------
Elola, M.T., Ferragut, F., Méndez-Huergo, S.P., Croci, D.O., Bracalente, C., Rabinovich, G.A. "Galectins: Multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment" . Cellular Immunology, vol. 333, 2018, pp. 34-45.
http://dx.doi.org/10.1016/j.cellimm.2018.03.008
---------- VANCOUVER ----------
Elola, M.T., Ferragut, F., Méndez-Huergo, S.P., Croci, D.O., Bracalente, C., Rabinovich, G.A. Galectins: Multitask signaling molecules linking fibroblast, endothelial and immune cell programs in the tumor microenvironment. Cell. Immunol. 2018;333:34-45.
http://dx.doi.org/10.1016/j.cellimm.2018.03.008