Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A multiwall carbon nanotube (MWCNT)/hercynite (FeAl2O 4) hybrid nanomaterial was synthesized by one-step chemical vapor deposition (CVD) using acetylene as precursor and FeOx-AlOOH xerogel as catalyst. The hybrid material was composing by hercynite nanoparticles (diameter 10-50 nm) intimately attached to the walls of the MWCNTs. The diameter of the MWCNTs was related to particle size of the catalyst. The hybrid nanomaterial exhibited a characteristic magnetic behavior that can be considered as a combination of superparamagnetism and ferromagnetism, with a saturation magnetization of 5.7 emu/g at an applied field of 18 kOe and a coercivity of 520 Oe. The hybrid displayed a relatively low pHZPC (approx. 3.2) and formed very stable aqueous suspensions at pH 5.5. Controlled oxidation of the hybrid generated oxidized functional groups, as -OH and -COOH, and promoted the transformation of hercynite to hematite. Due to the high dispersibility of the hybrid in water, it presents an interesting potential as nanofiller for hydrophilic polymers. © 2013 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:One-step chemical vapor deposition synthesis of magnetic CNT-hercynite (FeAl2O4) hybrids with good aqueous colloidal stability
Autor:Morales, N.J.; Goyanes, S.; Chiliotte, C.; Bekeris, V.; Candal, R.J.; Rubiolo, G.H.
Filiación:Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
Laboratorio de Polímeros y Materiales Compuestos, Departamento de Física, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
Laboratorio de Bajas Temperaturas, Departamento de Física, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
Escuela de Ciencia y Tecnología, 3iA, Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, 1650 San Martín, Provincia de Buenos Aires, Argentina
Gerencia Materiales, Comisión Nacional de Energía Atómica, Avda Gral Paz 1499, B1650KNA San Martín, Argentina
Palabras clave:Aqueous suspensions; Chemical vapor depositions (CVD); Colloidal Stability; Controlled oxidations; Dispersibilities; Hybrid nanomaterials; Hydrophilic polymers; Magnetic behavior; Catalysts; Functional groups; Hybrid materials; Multiwalled carbon nanotubes (MWCN); Nanostructured materials; Saturation magnetization; Superparamagnetism; Suspensions (fluids); Vapors; Chemical vapor deposition
Año:2013
Volumen:61
Página de inicio:515
Página de fin:524
DOI: http://dx.doi.org/10.1016/j.carbon.2013.04.106
Título revista:Carbon
Título revista abreviado:Carbon
ISSN:00086223
CODEN:CRBNA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00086223_v61_n_p515_Morales

Referencias:

  • Baughman, R.H., Zakhidov, A.A., De Heer, W.A., Carbon nanotubes - The route toward applications (2002) Science, 297 (5582), pp. 787-792
  • Eder, D., Carbon nanotube-inorganic hybrids (2010) Chem Rev, 110, pp. 1348-1385
  • Sun, D., Chu, C.C., Sue, H.J., Simple approach for preparation of epoxy hybrid nanocomposites based on carbon nanotubes and a model clay (2010) Chem Mater, 22, pp. 3773-3778
  • He, C.N., Tian, F., A carbon nanotube-alumina network structure for fabricating epoxy composites (2009) Scr Mater, 61, pp. 285-288
  • Kudus, M.H.A., Akil, H.M., Mohamad, H., Loon, L.E., Effect of catalyst calcination temperature on the synthesis of MWCNT-alumina hybrid compound using methane decomposition method (2011) J Alloys Compd, 509, pp. 2784-2788
  • Dupuis, A., The catalyst in the CCVD of carbon nanotubes - A review (2005) Prog Mater Sci, 50, pp. 929-996
  • Morales Mendoza, N., Goyanes, S., Chiliotte, C., Bekeris, V., Rubiolo, G., Candal, R., Magnetic binary nanofillers (2012) Physica B, 407 (16), pp. 3203-3205
  • Escobar, M., Moreno, M.S., Candal, R.J., Marchi, M.C., Caso, A., Polosecki, P.I., Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics (2007) Appl Surf Sci, 254, pp. 251-256
  • Chen, C.M., Dai, Y.M., Huang, J.G., Jehng, J.M., Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method (2006) Carbon, 44 (9), pp. 1808-1820
  • Eklund, P.C., Holden, J.M., Jishi, R.A., Vibrational modes of carbon nanotubes: Spectroscopy and theory (1995) Carbon, 33, pp. 959-972
  • Mawhinney, D.B., Naumenko, V., Kuznetsova, A., Yates, J.T., Infrared spectral evidence for the etching of carbon nanotubes: Ozone oxidation at 298 K (2000) J Am Chem Soc, 122, pp. 2383-2384
  • Escobar, M., Goyanes, S., Corcuera, M.A., Eceiza, A., Mondragón, I., Rubiolo, G.H., Purification and functionalization of carbon nanotubes by classical and advanced oxidation processes (2009) J. Nanosci Nanotechnol, 9, pp. 6228-6233
  • Kim, U.J., Furtado, C.A., Liu, X., Chen, G., Eklund, P.C., Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes (2005) J Am Chem Soc, 127, pp. 15437-15445
  • Branca, C., Frusteri, F., Magazu, V., Mangione, A., Characterization of carbon nanotubes by TEM and infrared spectroscopy (2004) J Phys Chem B, 108, pp. 3469-3473
  • Du, N., Xu, Y., Zhang, H., Zhai, C., Yang, D., Selective synthesis of Fe2O3 and Fe 3O4 nanowires via a single precursor: A general method for metal oxide nanowires (2010) Nanoscale Res Lett, 5, pp. 1295-1300
  • Acuña, J.J.S., Escobar, M., Goyanes, S.N., Candal, R.J., Zanatta, A.R., Alvarez, F., Effect of O2 +, H2 ++O 2 +, and N2 ++O2 + ion-beam irradiation on the field emission properties of carbon nanotubes (2011) J Appl Phys, 109, p. 114317
  • Viegas, A.D.C., Geshev, J., Dorneles, L.S., Schmidt, J.E., Knobel, M., Correlation between magnetic interactions and giant magnetoresistance in melt-spun Co10Cu90 granular alloys (1997) J Appl Phys, 82, pp. 3047-3053
  • Kosmulski, M., The pH-dependent surface charging and points of zero charge. V. Update (2011) J Colloid Interface Sci, 353, pp. 1-15
  • Dutta, D.P., Sharma, G., Synthesis and magnetic behavior of spinel FeAl2O4 nanoparticles (2011) Mater Sci Eng B, 176, pp. 177-180
  • Caizer, C., Hrianca, I., Dynamic magnetization of γ-Fe2O3 nanoparticles isolated in an SiO2 amorphous matrix (2003) Eur Phys J B, 31, pp. 391-400
  • Pickart, S.J., Turnock, A.C., Magnetic properties of solid solutions of Fe3O4 and FeAl2O4 (1959) J Phys Chem Solids, 10, pp. 242-244
  • Fan, N., Ma, X., Ju, Z., Li, J., Formation, characterization and magnetic properties of carbon-encapsulated iron carbide nanoparticles (2008) Mater Res Bull, 43, pp. 1549-1554
  • Esmaeili, E., Salavati-Niasari, M., Mohandes, F., Davar, F., Seyghalkar, H., Modified single-phase hematite nanoparticles via a facile approach for large-scale synthesis (2011) Chem Eng J, 170, pp. 278-285
  • Karakassides, M.A., Gournis, D., Bourlinos, A.B., Trikalitis, P.N., Bakas, T., Magnetic Fe2O3-Al2O3 composites prepared by a modified wet impregnation method (2003) J Mater Chem, 13, pp. 871-876
  • Lee, J., Kim, M., Hong, C.K., Shim, S.E., Measurement of the dispersion stability of pristine and surface-modified multiwalled carbon nanotubes in various nonpolar and polar solvents (2007) Meas Sci Technol, 18, pp. 3707-3712
  • Singh, B.P., Samal, S., Bhattacharjee, S., Besra, L., Characterization and dispersion of multiwalled carbon nanotubes (MWCNTs) in aqueous suspensions: Surface chemistry aspects (2012) J Dispersion Sci Technol, 7, pp. 1021-1029
  • Cerovic, Lj.S., Milonjic, S.K., Todorovic, M.B., Trtanj, M.I., Pogozhev, Y.S., Blagoveschenskii, Y., Point of zero charge of different carbides (2007) Colloids Surf A, 297, pp. 1-6
  • Dick, A., Körmann, F., Hickel, T., Neugebauer, J., Ab initio based determination of thermodynamic properties of cementite including vibronic, magnetic, and electronic excitations (2011) Phys Rev B, 84, p. 125101
  • Wang, Y., Jing, X., Intrinsically conducting polymers for electromagnetic interference shielding (2005) Polym Adv Technol, 16, pp. 344-351
  • Li, N., Huang, Y., Du, F., He, X., Lin, X., Gao, H., Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites (2006) Nano Lett, 6, pp. 1141-1145
  • Kim, H.M., Kim, K., Lee, S.J., Joo, J., Yoon, H.S., Cho, S.J., Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: Application to electromagnetic interference shielding (2004) Curr Appl Phys, 4, pp. 577-580
  • Ma, C.C.M., Huang, Y.L., Kuan, H.C., Chiu, Y.S., Preparation and electromagnetic interference shielding characteristics of novel carbon-nanotube/siloxane/poly-(urea urethane) nanocomposites (2005) J Polym Sci Part B Polym Phys, 43, pp. 345-358
  • Liu, Z., Bai, G., Huang, Y., Ma, Y., Du, F., Li, F., Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites (2007) Carbon, 45, pp. 821-827
  • Dhawan, S.K., Ohlan, A., Singh, K., Designing of nano composites of conducting polymers for EMI shielding (2011) Advances in Nanocomposites - Synthesis, Characterization and Industrial Applications, pp. 429-482. , B. Reddy, InTech Rijeka (Croatia)
  • Kim, H.M., Kim, K., Lee, C.Y., Jooa, J., Cho, S.J., Yoon, H.S., Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst (2004) Appl Phys Lett, 84, pp. 589-591
  • Grossiord, N., Loos, J., Koning, C.E., Strategies for dispersing carbon nanotubes in highly viscous polymers (2005) J Mater Chem, 15, pp. 2349-2352
  • Cai, D., Song, M., Water-based polyurethane filled with multi-walled carbon nanotubes prepared by a colloidal-physics method (2007) Macromol Chem Phys, 208, pp. 1183-1189
  • Zhao, W., Li, M., Peng, H.X., Functionalized MWNT-doped thermoplastic polyurethane nanocomposites for aerospace coating applications (2010) Macromol Mater Eng, 295, pp. 838-845
  • Yin, M., Wang, M., Miao, F., Ji, Y., Tian, Z., Shen, H., Water-dispersible multiwalled carbon nanotube/iron oxide hybrids as contrast agents for cellular magnetic resonance imaging (2012) Carbon, 50, pp. 2162-2170

Citas:

---------- APA ----------
Morales, N.J., Goyanes, S., Chiliotte, C., Bekeris, V., Candal, R.J. & Rubiolo, G.H. (2013) . One-step chemical vapor deposition synthesis of magnetic CNT-hercynite (FeAl2O4) hybrids with good aqueous colloidal stability. Carbon, 61, 515-524.
http://dx.doi.org/10.1016/j.carbon.2013.04.106
---------- CHICAGO ----------
Morales, N.J., Goyanes, S., Chiliotte, C., Bekeris, V., Candal, R.J., Rubiolo, G.H. "One-step chemical vapor deposition synthesis of magnetic CNT-hercynite (FeAl2O4) hybrids with good aqueous colloidal stability" . Carbon 61 (2013) : 515-524.
http://dx.doi.org/10.1016/j.carbon.2013.04.106
---------- MLA ----------
Morales, N.J., Goyanes, S., Chiliotte, C., Bekeris, V., Candal, R.J., Rubiolo, G.H. "One-step chemical vapor deposition synthesis of magnetic CNT-hercynite (FeAl2O4) hybrids with good aqueous colloidal stability" . Carbon, vol. 61, 2013, pp. 515-524.
http://dx.doi.org/10.1016/j.carbon.2013.04.106
---------- VANCOUVER ----------
Morales, N.J., Goyanes, S., Chiliotte, C., Bekeris, V., Candal, R.J., Rubiolo, G.H. One-step chemical vapor deposition synthesis of magnetic CNT-hercynite (FeAl2O4) hybrids with good aqueous colloidal stability. Carbon. 2013;61:515-524.
http://dx.doi.org/10.1016/j.carbon.2013.04.106