Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Modeling of the conversion of methyl 4-O-methyl-α-d-galactopyranoside 6-sulfate (2) and 2,6-disulfate (1) into methyl 3,6-anhydro-4-O-methyl-α-d-galactopyranoside (4) and its 2-sulfate (3), respectively (Scheme 1) has been carried out using DFT at the M06-2X/6-311 + G(d,p)//M06-2X/6-31 + G(d,p) level with the polarizable continuum model (PCM) in water. The three steps necessary for the alkaline transformation of 6-sulfated (and 2,6-disulfated) galactose units into 3,6-anhydro derivatives were evaluated. The final substitution step appears to be the rate limiting, involving an activation energy of ca. 23 kcal/mol. The other two steps (deprotonation and chair inversion) combined involve lower activation energies (9-12 kcal/mol). Comparison of the thermodynamics and kinetics of the reactions suggest that if the deprotonation step precedes the chair inversion, the reaction should be faster for both compounds. No major differences in reaction rate can be theoretically predicted to be caused by the presence of sulfate on O-2, although one experimental result suggested that O-2 sulfation should increase the reaction rate. The conformational pathways are complex, given the large number of rotamers available for each compound, and the way that some of these rotamers combine into some of the pathways. In any case, the conformation OS2 appears as a common intermediate for the chair inversion processes. © 2016 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:DFT/PCM theoretical study of the conversion of methyl 4-O-methyl-α-d-galactopyranoside 6-sulfate and its 2-sulfated derivative into their 3,6-anhydro counterparts
Autor:Cosenza, V.A.; Navarro, D.A.; Stortz, C.A.
Filiación:Departamento de Química Orgánica-CIHIDECAR, FCEyN-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:3,6-Anhydrogalactose; Alkaline treatment; Carrageenans; Conformation; Density functional theory; Galactose 6-sulfate; Activation energy; Chemical activation; Conformations; Continuum mechanics; Reaction kinetics; Reaction rates; Thermodynamics; 3,6-Anhydrogalactose; Alkaline treatment; Carrageenans; Conformational pathways; Galactose 6-sulfate; Polarizable continuum model; Substitution step; Thermodynamics and kinetics; Density functional theory; 2,6 disulfate; 4-o methyl alpha dextro galactopyranoside 6 sulfate; galactose; methyl 3,6 anhydro 4 o methyl alpha dextro galactopyranoside; oxygen; pyranoside; sulfate; unclassified drug; water; analysis; Article; chair inversion; chemical reaction kinetics; chemical structure; conformational transition; density functional theory; deprotonation; investigative procedures; kinetics; molecular model; polarizable continuum model; priority journal; quantum mechanics; sulfation; thermodynamics
Año:2016
Volumen:426
Página de inicio:15
Página de fin:25
DOI: http://dx.doi.org/10.1016/j.carres.2016.03.014
Título revista:Carbohydrate Research
Título revista abreviado:Carbohydr. Res.
ISSN:00086215
CODEN:CRBRA
CAS:galactose, 26566-61-0, 50855-33-9, 59-23-4; oxygen, 7782-44-7; sulfate, 14808-79-8; water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00086215_v426_n_p15_Cosenza

Referencias:

  • Stortz, C.A., Cerezo, A.S., (2000) Curr Top Phytochem, 4, pp. 121-134
  • Percival, E.J.V., (1949) Q Rev, 3, pp. 369-384
  • Rees, D.A., (1961) J Chem Soc, pp. 5168-5171
  • Ciancia, M., Noseda, M.D., Matulewicz, M.C., Cerezo, A.S., (1993) Carbohydr Polym, 20, pp. 95-98
  • Hegedüs, C., Madarás, J., Guyás, H., Szöllösy, A., Bakos, J., (2001) Tetrahedron Asymmetry, 12, pp. 2867-2873
  • Smidsrød, O., Larsen, B., Pernas, A.J., Haug, A., (1967) Acta Chem Scand, 21, pp. 2585-2598
  • Navarro, D.A., Stortz, C.A., (2003) Carbohydr Res, 338, pp. 2111-2118
  • Freile-Pelegrín, Y., Murano, E., (2005) Bioresour Technol, 96, pp. 295-302
  • Ciancia, M., Matulewicz, M.C., Cerezo, A.S., (1997) Carbohydr Polym, 32, pp. 293-295
  • Viana, A.G., Noseda, M.D., Duarte, M.E.R., Cerezo, A.S., (2004) Carbohydr Polym, 58, pp. 455-460
  • Noseda, M.D., Cerezo, A.S., (1995) Carbohydr Polym, 26, pp. 1-3
  • Noseda, M.D., Viana, A.G., Duarte, M.E.R., Cerezo, A.S., (2000) Carbohydr Polym, 42, pp. 301-305
  • Navarro, D.A., Stortz, C.A., (2005) Carbohydr Polym, 62, pp. 187-191
  • Imberty, A., Pérez, S., (2000) Chem Rev, 100, pp. 4567-4588
  • Kirschner, K.N., Yongye, A.B., Tschampel, S.M., González-Outeiriño, J., Daniels, C.R., Foley, B.L., (2008) J Comput Chem, 29, pp. 622-655
  • French, A.D., Kelterer, A.-M., Johnson, G.P., Dowd, M.K., Cramer, C.J., (2001) J Comput Chem, 22, pp. 65-78
  • Kohn, W., Becke, A.D., Parr, R.G., (1996) J Phys Chem, 100, pp. 12974-12980
  • Momany, F.A., Willett, J.L., (2000) Carbohydr Res, 326, pp. 210-226
  • Csonka, G.I., (2002) J Mol Struct (Theochem), 584, pp. 1-4
  • Appell, M., Strati, G.L., Willett, J.L., Momany, F.A., (2004) Carbohydr Res, 339, pp. 537-551
  • Csonka, G.I., French, A.D., Johnson, G.P., Stortz, C.A., (2009) J Chem Theory Comput, 5, pp. 679-692
  • Csonka, G.I., Kaminsky, J., (2011) J Chem Theory Comput, 7, pp. 988-997
  • Goerigk, L., Grimme, S., (2011) J Chem Theory Comput, 7, pp. 291-309
  • Colombo, M.I., Rúveda, E.A., Gorlova, O., Lalancette, R., Stortz, C.A., (2012) Carbohydr Res, 353, pp. 79-85
  • Sameera, W.M.C., Pantazis, D.A., (2012) J Chem Theory Comput, 8, pp. 2630-2645
  • Zhao, Y., Truhlar, D.G., (2006) Org Lett, 8, pp. 5753-5755
  • Zhao, Y., Truhlar, D.G., (2008) Theor Chem Acc, 120, pp. 215-241
  • Tomasi, J., Mennucci, B., Cammi, R., (2005) Chem Rev, 105, pp. 2999-3093
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., (2009) Gaussian 09W, Revision B.01, , Gaussian Inc., Wallington CT
  • Allinger, N.L., Yuh, Y.H., Lii, J.-H., (1989) J Am Chem Soc, 111, pp. 8551-8566
  • Stortz, C.A., (2005) J Comput Chem, 26, pp. 471-483
  • Stortz, C.A., (2010) J Phys Org Chem, 23, pp. 1173-1186
  • Peng, C., Schlegel, H.B., (1993) Isr J Chem, 33, pp. 449-454
  • Cremer, D., Pople, J.A., (1975) J Am Chem Soc, 97, pp. 1354-1358
  • Engelsen, S.B., Koca, J., Braccini, I., Hervé Du Penhoat, C., Pérez, S., (1995) Carbohydr Res, 276, pp. 1-29
  • Ionescu, A.R., Bérces, A., Zgierski, M.Z., Whitfield, D.M., Nukada, T., (2005) J Phys Chem A, 109, pp. 8096-8105
  • Hendrickson, J.B., (1967) J Am Chem Soc, 89, pp. 7047-7061
  • French, A.D., Brady, J.W., (1989) ACS Symp ser, 430, pp. 1-19
  • Smith, B.J., (1998) J Phys Chem A, 102, pp. 3756-3761
  • Joshi, N.V., Rao, V.S.R., (1979) Biopolymers, 18, pp. 2993-3000
  • Dowd, M.K., French, A.D., Reilly, P.J., (1994) Carbohydr Res, 264, pp. 1-19
  • Mayes, H.B., Broadbelt, L.J., Beckham, G.T., (2013) J Am Chem Soc, 136, pp. 1008-1022
  • Biarnés, X., Ardèvol, A., Planas, A., Rovira, C., Laio, A., Parrinello, M., (2007) J Am Chem Soc, 129, pp. 10686-10693
  • Ardèvol, A., Biarnés, X., Planas, A., Rovira, C., (2010) J Am Chem Soc, 132, pp. 16058-16065
  • Plazinski, W., Drach, M., (2014) RSC Adv, 4, pp. 25028-25039

Citas:

---------- APA ----------
Cosenza, V.A., Navarro, D.A. & Stortz, C.A. (2016) . DFT/PCM theoretical study of the conversion of methyl 4-O-methyl-α-d-galactopyranoside 6-sulfate and its 2-sulfated derivative into their 3,6-anhydro counterparts. Carbohydrate Research, 426, 15-25.
http://dx.doi.org/10.1016/j.carres.2016.03.014
---------- CHICAGO ----------
Cosenza, V.A., Navarro, D.A., Stortz, C.A. "DFT/PCM theoretical study of the conversion of methyl 4-O-methyl-α-d-galactopyranoside 6-sulfate and its 2-sulfated derivative into their 3,6-anhydro counterparts" . Carbohydrate Research 426 (2016) : 15-25.
http://dx.doi.org/10.1016/j.carres.2016.03.014
---------- MLA ----------
Cosenza, V.A., Navarro, D.A., Stortz, C.A. "DFT/PCM theoretical study of the conversion of methyl 4-O-methyl-α-d-galactopyranoside 6-sulfate and its 2-sulfated derivative into their 3,6-anhydro counterparts" . Carbohydrate Research, vol. 426, 2016, pp. 15-25.
http://dx.doi.org/10.1016/j.carres.2016.03.014
---------- VANCOUVER ----------
Cosenza, V.A., Navarro, D.A., Stortz, C.A. DFT/PCM theoretical study of the conversion of methyl 4-O-methyl-α-d-galactopyranoside 6-sulfate and its 2-sulfated derivative into their 3,6-anhydro counterparts. Carbohydr. Res. 2016;426:15-25.
http://dx.doi.org/10.1016/j.carres.2016.03.014