Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Lectins are able to recognize specific carbohydrate structures through their carbohydrate recognition domain (CRD). The lectin from the mushroom Agaricus bisporus (ABL) has the remarkable ability of selectively recognizing the TF-antigen, composed of Galβ1-3GalNAc, Ser/Thr linked to proteins, specifically exposed in neoplastic tissues. Strikingly, the recently solved crystal structure of tetrameric ABL in the presence of TF-antigen and other carbohydrates showed that each monomer has two CRDs, each being able to bind specifically to different monosaccharides that differ only in the configuration of a single hydroxyl, like N-acetyl-d-galactosamine (GalNAc) and N-acetyl-d-glucosamine (GlcNAc). Understanding how lectin CRDs bind and discriminate mono and/or (poly)-saccharides is an important issue in glycobiology, with potential impact in the design of better and selective lectin inhibitors with potential therapeutic properties. In this work, and based on the unusual monosaccharide epimeric specificity of the ABL CRDs, we have performed molecular dynamics simulations of the natural (crystallographic) and inverted (changing GalNAc for GlcNAc and vice-versa) ABL-monosaccharide complexes in order to understand the selective ligand recognition properties of each CRD. We also performed a detailed analysis of the CRD local solvent structure, using previously developed methodology, and related it with the recognition mechanism. Our results provide a detailed picture of each ABL CRD specificity, allowing a better understanding of the carbohydrate selective recognition process in this particular lectin. © 2011 Published by Elsevier Ltd.

Registro:

Documento: Artículo
Título:Structural basis for ligand recognition in a mushroom lectin: Solvent structure as specificity predictor
Autor:Gauto, D.F.; Di Lella, S.; Estrin, D.A.; Monaco, H.L.; Martí, M.A.
Filiación:Departamento de Química Inorgánica, Analítica, y Química Física, INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Ciudad de Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, C1428EHA Ciudad de Buenos Aires, Argentina
Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134 Verona, Italy
Palabras clave:Affinity; Carbohydrate recognition domain; Lectin; Molecular dynamics; Selectivity; Solvent structure; Affinity; Carbohydrate recognition domain; Lectin; Selectivity; Solvent structure; Antigens; Carbohydrates; Glucose; Ligands; Molecular dynamics; Solvents; Tissue; Troposphere; Crystal structure; Agaricus bisporus lectin; lectin; n acetylgalactosamine; unclassified drug; Agaricus bisporus; article; carbohydrate recognition domain; complex formation; controlled study; crystal structure; epimer; hydrogen bond; lectin binding; lectin binding site; ligand binding; molecular dynamics; molecular model; molecular recognition; priority journal; protein domain; thermodynamics; Acetylgalactosamine; Acetylglucosamine; Agaricus; Antigens, Tumor-Associated, Carbohydrate; Binding Sites; Carbohydrate Conformation; Hydrogen Bonding; Lectins; Molecular Dynamics Simulation; Protein Binding; Thermodynamics; Agaricus bisporus; Basidiomycota
Año:2011
Volumen:346
Número:7
Página de inicio:939
Página de fin:948
DOI: http://dx.doi.org/10.1016/j.carres.2011.02.016
Título revista:Carbohydrate Research
Título revista abreviado:Carbohydr. Res.
ISSN:00086215
CODEN:CRBRA
CAS:Acetylgalactosamine, 31022-50-1; Acetylglucosamine, 7512-17-6; Agaricus lectins; Antigens, Tumor-Associated, Carbohydrate; Lectins; Thomsen-Friedenreich antigen, 3554-90-3
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00086215_v346_n7_p939_Gauto

Referencias:

  • Varki, A., Cummings, R., Esko, J., Hart, G., Freeze, H., Marth, J., (1999) Essentials of Glycobiology, , 2nd ed.; Cold Spring Harbor Laboratory Press
  • Springer, G.F., (1984) Science, 224, pp. 1198-1206
  • Springer, G.F., (1997) J. Mol. Med., 75, pp. 594-602
  • Singh, R.S., Bhari, R., Kaur, H.P., (2010) Crit. Rev. Biotechnol., 30, pp. 99-126
  • Carrizo, M.E., Capaldi, S., Perduca, M., Irazoqui, F.J., Nores, G.A., Monaco, H.L., (2005) J. Biol. Chem., 280, pp. 10614-10623
  • Yu, L., Fernig, D.G., Smith, J.A., Milton, J.D., Rhodes, J.M., (1993) Cancer Res., 53, pp. 4627-4632
  • Yu, L.G., Andrews, N., Weldon, M., Gerasimenko, O.V., Campbell, B.J., Singh, R., Grierson, I., Rhodes, J.M., (2002) J. Biol. Chem., 277, pp. 24538-24545
  • Leonidas, D.D., Swamy, B.M., Hatzopoulos, G.N., Gonchigar, S.J., Chachadi, V.B., Inamdar, S.R., Zographos, S.E., Oikonomakos, N.G., (2007) J. Mol. Biol., 368, pp. 1145-1161
  • Demarco, M.L., Woods, R.J., (2008) Glycobiology, 18, pp. 426-440
  • Bies, C., Lehr, C.M., Woodley, J.F., (2004) Adv. Drug Delivery Rev., 56, pp. 425-435
  • Pathiaseril, A., Woods, R.J., (2000) J. Am. Chem. Soc., 122, pp. 331-338
  • Agostino, M., Jene, C., Boyle, T., Ramsland, P.A., Yuriev, E., (2009) J. Chem. Inf. Model., 49, pp. 2749-2760
  • Di Lella, S., Marti, M.A., Alvarez, R.M.S., Estrin, D.A., Díaz Ricci, J.C., (2007) J. Phys. Chem. B., 111, pp. 7360-7366
  • Gauto, D.F., Di Lella, S., Guardia, C.M., Estrin, D.A., Marti, M.A., (2009) J. Phys. Chem. B., 113, pp. 8717-8724
  • Li, Z., Lazaridis, T., (2005) J. Phys. Chem. B., 109, pp. 662-670
  • Li, Z., Lazaridis, T., (2006) J. Phys. Chem. B., 110, pp. 1464-1475
  • Clarke, C., Woods, R.J., Gluska, J., Cooper, A., Nutley, M.A., Boons, G., (2001) J. Am. Chem. Soc., 123, pp. 12238-12247
  • Fadda, E., Woods, R.J., (2010) Drug Discovery Today, 15, pp. 596-609
  • Ford, M.G., Weimar, T., Kölhi, T., Woods, R.J., (2003) Proteins: Struct., Funct., Genet., 53, pp. 229-240
  • Frank, M., Schloissnig, S., (2010) Cell. Mol. Life Sci., 67, pp. 2749-2772
  • Kadirvelraj, R., Foley, B.L., Dyekjaer, J.D., Woods, R.J., (2008) J. Am. Chem. Soc., 130, pp. 16933-16942
  • Tame, J.R.H., Murshudov, G.N., Dodson, E.J., Neil, T.K., Wilkinson, A.J., (1994) Science, 264, pp. 1578-1581
  • Sleigh, S.H., Tame, J.R.H., Dodson, E.J., Wilkinson, A.J., (1997) Biochemistry, 36, pp. 9747-9758
  • Naisimith, J.H., Field, R.A., (1996) J. Biol. Chem., 271, pp. 972-976
  • Loris, R., Maes, D., Poortmans, F., Wyns, L., Bouckaert, J., (1996) J. Biol. Chem., 271, pp. 30614-30618
  • Weisner, S., Kurian, E., Prendergast, F.G., Halle, B., (1999) J. Mol. Biol., 286, pp. 233-246
  • Abel, R., Young, T., Farid, R., Berne, B.J., Friesner, R.A., (2008) J. Am. Chem. Soc., 130, pp. 2817-2831
  • Robinson, D.D., Sherman, W., Farid, R., (2010) ChemMedChem, 5, pp. 618-627
  • Case, D.A., Cheatham Iii, T.E., Darden, T., Gohlke, H., Luo, R., Merz Jr., K.M., Onufriev, A., Woods, R., (2005) J. Computat. Chem., 26, pp. 1668-1688. , and The Amber biomolecular simulation programs
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., (2006) Proteins: Struct., Funct., Genet., 65, pp. 712-725
  • Case, D.A., Cheatham, T.E., Darden, T.A., Gohlke, H., Luo, R., Merz, K.M.J., Onufriev, A., Woods, R.J., (2005) J. Comput. Chem., 26, pp. 1668-1688
  • Corzana, F., Motawia, M.S., Herve Du Penhoat, C., Van Den Berg, F., Blennow, A., Perez, S., Engelsen, S.B., (2004) J. Am. Chem. Soc., 126, pp. 13144-13155
  • Constanciel, R., Contreras, R., (1984) Theor. Chim. Acta, 65, pp. 1-11
  • Case, D.A., (2008) Amber, 10
  • Still, W.C., Tempczyrk, A., Hawley, R.C., Hendrickson, T., (1990) J. Am. Chem. Soc., 112, pp. 6127-6129
  • Humphrey, W., Dalke, A., Schulten, K., (1996) J. Mol. Graphics, 14, pp. 33-38
  • Guardia, C.M.A.; Gauto, D.F.; Di Lella, S.; Rabinovichm, G.A.; Marti, M.A.; Estrin, D. A. Submitted for publication; Di Lella, S., Ma, L., Rabinovich, G.A., Díaz Ricci, J.C., Asher, S., Alvarez, R.M.S., (2009) Biochemistry, 48, pp. 786-791
  • Díaz, M.D., Fernández-Alonso, M.D.C., Cuevas, G., Cañada, F.J., Jiménez-Barbero, J., (2008) Pure Appl. Chem., 80, pp. 1827-1835

Citas:

---------- APA ----------
Gauto, D.F., Di Lella, S., Estrin, D.A., Monaco, H.L. & Martí, M.A. (2011) . Structural basis for ligand recognition in a mushroom lectin: Solvent structure as specificity predictor. Carbohydrate Research, 346(7), 939-948.
http://dx.doi.org/10.1016/j.carres.2011.02.016
---------- CHICAGO ----------
Gauto, D.F., Di Lella, S., Estrin, D.A., Monaco, H.L., Martí, M.A. "Structural basis for ligand recognition in a mushroom lectin: Solvent structure as specificity predictor" . Carbohydrate Research 346, no. 7 (2011) : 939-948.
http://dx.doi.org/10.1016/j.carres.2011.02.016
---------- MLA ----------
Gauto, D.F., Di Lella, S., Estrin, D.A., Monaco, H.L., Martí, M.A. "Structural basis for ligand recognition in a mushroom lectin: Solvent structure as specificity predictor" . Carbohydrate Research, vol. 346, no. 7, 2011, pp. 939-948.
http://dx.doi.org/10.1016/j.carres.2011.02.016
---------- VANCOUVER ----------
Gauto, D.F., Di Lella, S., Estrin, D.A., Monaco, H.L., Martí, M.A. Structural basis for ligand recognition in a mushroom lectin: Solvent structure as specificity predictor. Carbohydr. Res. 2011;346(7):939-948.
http://dx.doi.org/10.1016/j.carres.2011.02.016