Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Different conformations of methyl 3,6-anhydro-4-O-methyl-α-d-galactoside (1) and 3,6-anhydro-4-O-methylgalactitol (2) were studied by molecular mechanics (using the program mm3) and by quantum mechanical (QM) methods at the B3LYP/6-31+G** and MP2/6-311++G** levels, with and without solvent emulation. In 2, where the five-membered ring is free to move, two main stable conformations of this ring were found, identified as North (N) and South (S). The latter appears to be more stable, by either calculation, though the energy difference is reduced when emulating solution behavior. In order to find out the possible influence of a glycosidic bond over its shape, and to explain the marked NMR chemical shift displacements observed by opening of the ring, the adiabatic maps of two disaccharides carrying an analog of β-galactoside linked to O-4 of 1 and 2 were generated. It was shown that the characteristics of the 3,6-AnGal terminal influence the characteristics of the map, especially at lower dielectric constants. On the other hand, different glycosidic angles also promote distinct stable conformations of the five-membered ring, changing from N to S, or even variants. Comparison with experimental results leads to the idea of highly flexible disaccharides, with variable values for both the five-membered ring and the glycosidic angles. © 2008 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:DFT/MM modeling of the five-membered ring in 3,6-anhydrogalactose derivatives and its influence on disaccharide adiabatic maps
Autor:Navarro, D.A.; Stortz, C.A.
Filiación:Departamento de Química Orgánica-CIHIDECAR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:3,6-Anhydrogalactose; Adiabatic maps; Five-membered ring; mm3; Modeling; Puckering; Maps; Polysaccharides; Speed; Quantum mechanical (QM) methods; Molecular mechanics; 3,6 anhydro 4 O methyl alpha dextro galactoside; 3,6 anhydro 4 O methylgalactitol; disaccharide; galactoside; solvent; adiabaticity; article; dielectric constant; mathematical computing; molecular biology; nuclear magnetic resonance; priority journal; quantum mechanics; Carbohydrate Conformation; Crystallography, X-Ray; Disaccharides; Galactitol; Galactose; Glycosides; Magnetic Resonance Spectroscopy; Models, Chemical; Molecular Conformation; Molecular Structure; Quantum Theory; Reproducibility of Results; Software
Año:2008
Volumen:343
Número:13
Página de inicio:2292
Página de fin:2298
DOI: http://dx.doi.org/10.1016/j.carres.2008.04.037
Título revista:Carbohydrate Research
Título revista abreviado:Carbohydr. Res.
ISSN:00086215
CODEN:CRBRA
CAS:Disaccharides; Galactitol, 608-66-2; Galactose, 26566-61-0; Glycosides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00086215_v343_n13_p2292_Navarro

Referencias:

  • French, A.D., Brady, J.W., (1989) ACS Symp. Ser., 430, pp. 1-19
  • Dowd, M.K., French, A.D., Reilly, P.J., (1994) Carbohydr. Res., 264, pp. 1-19
  • Lederkremer, R.M., Colli, W., (1995) Glycobiology, 5, pp. 547-552
  • Kilpatrick, J.E., Pitzer, K.S., Spitzer, R., (1947) J. Am. Chem. Soc., 69, pp. 2483-2488
  • Cremer, D., Pople, J.A., (1975) J. Am. Chem. Soc., 97, pp. 1358-1367
  • Fuchs, B., (1978) Top. Stereochem., 10, pp. 1-94
  • Cremer, D., (1983) Isr. J. Chem., 23, pp. 72-84
  • Angelotti, T., Krisko, M., O'Connor, T., Serianni, A.S., (1987) J. Am. Chem. Soc., 109, pp. 4464-4472
  • Wiberg, K.B., Waldron, R.F., (1991) J. Am. Chem. Soc., 113, pp. 7697-7705
  • Ferguson, D.M., Gould, I.R., Glauser, W.A., Schroeder, S., Kollman, P.A., (1992) J. Comput. Chem., 13, pp. 525-532
  • Jaime, C., Segura, C., Dinarés, I., Font, J., (1993) J. Org. Chem., 58, pp. 154-158
  • Han, S.-Y., Joullié, M.M., Fokin, V.V., Petasis, N.A., (1994) Tetrahedron: Asymmetry, 5, pp. 2535-2562
  • Dinarés, I., Entrena, A., Jaime, C., Segura, C., Font, J., (1997) Electron. J. Theor. Chem., 2, pp. 160-167
  • Abraham, R.J., Ghersi, A., Petrillo, G., Sancassan, F., (1997) J. Chem. Soc., Perkin Trans. 2, pp. 1279-1286
  • Maier, M.S., González Marimón, D.I., Stortz, C.A., Adler, M.T., (1999) J. Nat. Prod., 62, pp. 1565-1567
  • Stortz, C.A., Maier, M.S., (2000) J. Chem. Soc., Perkin Trans. 2, pp. 1832-1836
  • Viturro, C.I., Maier, M.S., Stortz, C.A., De la Fuente, J.R., (2001) Tetrahedron: Asymmetry, 12, pp. 991-998
  • Cremer, D., Pople, J.A., (1975) J. Am. Chem. Soc., 97, pp. 1354-1358
  • French, A.D., Dowd, M.K., Reilly, P.J., (1997) J. Mol. Struct. Theochem, 395-396, pp. 271-287
  • Stortz, C.A., Cerezo, A.S., (2000) Curr. Top. Phytochem., 4, pp. 121-134
  • Schafer, S.E., Stevens, E.S., Dowd, M.K., (1995) Carbohydr. Res., 270, pp. 217-220
  • Mazurek, A.P., Szeja, W., (1985) J. Chem. Soc., Perkin Trans. 2, pp. 57-58
  • Navarro, D.A., Stortz, C.A., (2005) Carbohydr. Res., 340, pp. 2030-2038
  • France, C.J., McFarlane, I.M., Newton, C.G., Pitchen, P., Barton, D.H.R., (1991) Tetrahedron, 32, pp. 6381-6388
  • McDonnell, C., López, O., Murphy, P., Fernández Bolaños, J.G., Hazell, R., Bols, M., (2004) J. Am. Chem. Soc., 126, pp. 12374-12385
  • Meltzer, P.C., Blundell, P., Chen, Z., Yong, Y.F., Madras, B.K., (1999) Bioorg. Med. Chem. Lett., 9, pp. 857-862
  • Miller, I.J., Wong, H., Newman, R.H., (1982) Aust. J. Chem., 35, pp. 853-856
  • Stortz, C.A., Cerezo, A.S., (1991) Int. J. Biol. Macromol., 13, pp. 101-104
  • Allinger, N.L., Yuh, Y.H., Lii, J.-H., (1989) J. Am. Chem. Soc., 111, pp. 8551-8566
  • Allinger, N.L., Rahman, M., Lii, J.-H., (1990) J. Am. Chem. Soc., 112, pp. 8293-8307
  • Stortz, C.A., (2005) J. Comput. Chem., 26, pp. 471-483
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (1998) gaussian 98, Revision A.7, , Gaussian, Pittsburgh PA
  • Barone, V., Cossi, M., Tomasi, J., (1998) J. Comput. Chem., 19, pp. 404-417
  • Engelsen, S.B., Koča, J., Braccini, I., Hervé du Penhoat, C., Pérez, S., (1995) Carbohydr. Res., 276, pp. 1-29
  • Haasnoot, C.A.G., de Leeuw, F.A.A.M., Altona, C., (1980) Tetrahedron, 36, pp. 2783-2792
  • Stortz, C.A., (2002) Carbohydr. Res., 337, pp. 2311-2323. , and references cited therein
  • French, A.D., Dowd, M.K., (1994) J. Comput. Chem., 15, pp. 561-570
  • Lamba, D., Segre, A.L., Glover, S., Mackie, W., Sheldrick, B., Pérez, S., (1990) Carbohydr. Res., 208, pp. 215-230
  • Grimme, S., (2006) Angew. Chem., Int. Ed., 45, pp. 4460-4464
  • Hricovíni, M., (2006) Carbohydr. Res., 341, pp. 2575-2580
  • Vidra, I., Simon, K., Institóris, L., Csöregh, I., Czugler, M., (1982) Carbohydr. Res., 111, pp. 41-57
  • Lamba, D., Burden, C., Mackie, W., Sheldrick, B., (1986) Carbohydr. Res., 155, pp. 11-17
  • Kurszewska, M., Skorupowa, E., Madaj, J., Konitz, A., Wojnowski, W., Wisniewski, A., (2002) Carbohydr. Res., 337, pp. 1261-1268
  • Romero Zaliz, C.R., Varela, O., (2003) Tetrahedron: Asymmetry, 14, pp. 2579-2586
  • Millane, R.P., Chandrasekaran, R., Arnott, S., Dea, I.C.M., (1988) Carbohydr. Res., 182, pp. 1-17
  • Janaswamy, S., Chandrasekaran, R., (2001) Carbohydr. Res., 335, pp. 181-194
  • Janaswamy, S., Chandrasekaran, R., (2002) Carbohydr. Res., 337, pp. 523-535
  • Parra, E., Caro, H.-N., Jiménez-Barbero, J., Martín-Lomas, M., Bernabé, M., (1990) Carbohydr. Res., 208, pp. 83-92
  • Gonçalves, A.G., Ducatti, D.R.B., Paranha, R.G., Duarte, M.E.R., Noseda, M.D., (2005) Carbohydr. Res., 340, pp. 2123-2134
  • Usov, A.I., Elashvili, M.Ya., (1991) Bot. Mar., 34, pp. 553-560
  • Bock, K., Brignole, A., Sigurskjold, B.W., (1986) J. Chem. Soc., Perkin Trans. 2, pp. 1711-1713
  • Shashkov, A.S., Lipkind, G.M., Knirel, Yu.A., Kochetkov, N.K., (1988) Magn. Reson. Chem., 26, pp. 735-747
  • Wolinski, K., Hilton, J.F., Pulay, P., (1990) J. Am. Chem. Soc., 112, pp. 8251-8260
  • Bagno, A., Rastrelli, F., Saielli, G., (2007) J. Org. Chem., 72, pp. 7373-7381

Citas:

---------- APA ----------
Navarro, D.A. & Stortz, C.A. (2008) . DFT/MM modeling of the five-membered ring in 3,6-anhydrogalactose derivatives and its influence on disaccharide adiabatic maps. Carbohydrate Research, 343(13), 2292-2298.
http://dx.doi.org/10.1016/j.carres.2008.04.037
---------- CHICAGO ----------
Navarro, D.A., Stortz, C.A. "DFT/MM modeling of the five-membered ring in 3,6-anhydrogalactose derivatives and its influence on disaccharide adiabatic maps" . Carbohydrate Research 343, no. 13 (2008) : 2292-2298.
http://dx.doi.org/10.1016/j.carres.2008.04.037
---------- MLA ----------
Navarro, D.A., Stortz, C.A. "DFT/MM modeling of the five-membered ring in 3,6-anhydrogalactose derivatives and its influence on disaccharide adiabatic maps" . Carbohydrate Research, vol. 343, no. 13, 2008, pp. 2292-2298.
http://dx.doi.org/10.1016/j.carres.2008.04.037
---------- VANCOUVER ----------
Navarro, D.A., Stortz, C.A. DFT/MM modeling of the five-membered ring in 3,6-anhydrogalactose derivatives and its influence on disaccharide adiabatic maps. Carbohydr. Res. 2008;343(13):2292-2298.
http://dx.doi.org/10.1016/j.carres.2008.04.037