Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The trans-sialidase from Trypanosoma cruzi (TcTS), the agent of Chagas' disease, is a unique enzyme involved in mammalian host-cell invasion. Since T. cruzi is unable to synthesize sialic acids de novo, TcTS catalyzes the transfer of α-(2→3)-sialyl residues from the glycoconjugates of the host to terminal β-galactopyranosyl units present on the surface of the parasite. TcTS also plays a key role in the immunomodulation of the infected host. Chronic Chagas' disease patients elicit TcTS-neutralizing antibodies that are able to inhibit the enzyme. N-Glycolylneuraminic acid has been detected in T. cruzi, and the trans-sialidase was pointed out as the enzyme involved in its incorporation from host glycoconjugates. However, N-glycolylneuraminic acid α-(2→3)-linked-containing oligosaccharides have not been analyzed as donors in the T. cruzi trans-sialidase reaction. In this paper we studied the ability of TcTS to transfer N-glycolylneuraminic acid from Neu5Gc(α2→3)Gal(β1→4)GlcβOCH2CH2N3 (1) and Neu5Gc(α2→3)Gal(β1→3)GlcNAcβOCH2CH2N3 (2) to lactitol, N-acetyllactosamine and lactose as acceptor substrates. Transfer from 1 was more efficient (50-65%) than from 2 (20-30%) for the three acceptors. The reactions were inhibited when the enzyme was preincubated with a neutralizing antibody. Km values were calculated for 1 and 2 and compared with 3′-sialyllactose using lactitol as acceptor substrate. Analysis was performed by high-performance anion-exchange (HPAEC) chromatography. A competitive transfer reaction of compound 1 in the presence of 3′-sialyllactose and N-acetyllactosamine showed a better transfer of Neu5Gc than of Neu5Ac. © 2007 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:The trans-sialidase from Trypanosoma cruzi efficiently transfers α-(2→3)-linked N-glycolylneuraminic acid to terminal β-galactosyl units
Autor:Agustí, R.; Giorgi, M.E.; de Lederkremer, R.M.
Filiación:CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon II, 1428 Buenos Aires, Argentina
Palabras clave:HPAEC; Neu5Gc transfer; trans-Sialidase; Trypanosoma cruzi; Antibodies; Biosynthesis; Carboxylic acids; Cells; Diseases; Mammals; Oligosaccharides; Chagas disease; Galactosyl units; Glycolylneuraminic acid; Trypanosoma cruzi; Enzyme inhibition; galactose; n glycoloylneuraminic acid; oligosaccharide; sialidase; anion exchange chromatography; article; Chagas disease; immunomodulation; priority journal; Trypanosoma cruzi; Animals; Galactose; Glycoproteins; Neuraminic Acids; Neuraminidase; Trypanosoma cruzi; Mammalia; Trypanosoma cruzi
Año:2007
Volumen:342
Número:16
Página de inicio:2465
Página de fin:2469
DOI: http://dx.doi.org/10.1016/j.carres.2007.07.018
Título revista:Carbohydrate Research
Título revista abreviado:Carbohydr. Res.
ISSN:00086215
CODEN:CRBRA
CAS:galactose, 26566-61-0, 50855-33-9, 59-23-4; n glycoloylneuraminic acid, 1113-83-3; sialidase, 9001-67-6; Galactose, 26566-61-0; Glycoproteins; N-glycolylneuraminic acid, 1113-83-3; Neuraminic Acids; Neuraminidase, EC 3.2.1.18; trans-sialidase, EC 3.2.1.-
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00086215_v342_n16_p2465_Agusti

Referencias:

  • Schenkman, S., Jiang, M.S., Hart, G.W., Nussenzweig, V., (1991) Cell, 65, pp. 1117-1125
  • Frasch, A.C.C., (2000) Parasitol. Today, 16, pp. 282-286
  • Acosta-Serrano, A., Almeida, I.C., Freitas-Junior, L.H., Yoshida, N., Schenkman, S., (2001) Mol. Biochem. Parasitol., 114, pp. 245-247
  • Buscaglia, C.A., Alfonso, J., Campetella, O., Frasch, A.C.C., (1999) Blood, 93, pp. 2025-2032
  • Risso, M.G., Pitcovsky, T.A., Caccuri, R.L., Campetella, O., Leguizamon, M.S., (2006) Parasitology, 134, pp. 503-510
  • Previato, J.O., Jones, C., Gonçalves, L.P., Wait, R., Travassos, L.R., Mendonça-Previato, L., (1994) Biochem. J., 301, pp. 151-159
  • Acosta-Serrano, A., Schenkman, S., Yoshida, N., Mehlert, A., Richardson, J.M., Ferguson, M.A.J., (1995) J. Biol. Chem., 270, pp. 27244-27253
  • Agrellos, O.A., Jones, C., Todeschini, A.R., Previato, J.O., Mendonça-Previato, L., (2003) Mol. Biochem. Parasitol., 126, pp. 93-96
  • Jones, C., Todeschini, A.R., Agrellos, A.O., Previato, J.O., Mendonça-Previato, L., (2004) Biochemistry, 43, pp. 11889-11897
  • Agusti, R., Giorgi, M.E., Mendoza, V.M., Gallo-Rodriguez, C., Lederkremer, R.M., (2007) Bioorg. Med. Chem., 15, pp. 2611-2616
  • Agusti, R., Paris, G., Ratier, L., Frasch, A.C.C., Lederkremer, R.M., (2004) Glycobiology, 14, pp. 259-270
  • Mucci, J., Risso, M.G., Leguizamón, M.S., Frasch, A.C.C., Campetella, O., (2006) Cell Microbiol., 8, pp. 1086-1095
  • Vetere, A., Paoletti, S., (1996) FEBS Lett., 399, pp. 203-206
  • Singh, S., Scigelova, M., Hallberg, M.L., Howarth, O.W., Schenkman, S., Crout, D.H.G., (2000) Chem Commun. (Cambridge), pp. 1013-1014
  • Neubacher, B., Schmidt, D., Ziegelmuller, P., Thiem, J., (2005) Org. Biomol. Chem., 3, pp. 1551-1556
  • Kroger, L., Scudlo, A., Thiem, J., (2006) Adv. Synth. Catal., 348, pp. 1217-1227
  • Agusti, R., Mendoza, V., Gallo-Rodriguez, C., Lederkremer, R.M., (2005) Tetrahedron: Asymmetry, 16, pp. 541-551
  • Mendoza, V.M., Agusti, R., Gallo-Rodriguez, C., Lederkremer, R.M., (2006) Carbohydr. Res., 341, pp. 1488-1497
  • Schauer, R., (2004) Zoology, 107, pp. 49-64
  • Malykh, Y.N., Schauer, R., Shaw, L., (2001) Biochimie, 83, pp. 623-634
  • Tangvoranuntakul, P., Gagneux, P., Diaz, S., Bardor, M., Varki, N., Varki, A., Muchmore, E., (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 12045-12050
  • Schauer, R., Reuter, G., Muhlpfordt, H., Andrade, A.F.B., Pereira, M.E.A., (1983) Hoppe-Seyler's Z Physiol. Chem., 364, pp. 1053-1057
  • Previato, J.O., Andrade, A.B., Vermelho, A., Firmino, J.C., Mendonça-Previato, L., (1990) Mem. Inst. Oswaldo Cruz., 85, p. 38
  • Hara, S., Yamaguchi, M., Takemori, Y., Furuhata, K., Ogura, H., Nakamura, M., (1989) Anal. Biochem., 179, pp. 162-166
  • Engstler, M., Schauer, R., Brun, R., (1995) Acta. Trop., 59, pp. 117-129
  • Vandekerckhove, F., Schenkman, S., Pontes de Carvalho, L., Kiso, M., Yoshida, M., Hasegawa, A., Nussenzweig, V., (1992) Glycobiology, 2, pp. 541-548
  • Tribulatti, M.V., Mucci, J., van Rooijen, N., Leguizamon, M.S., Campetella, O., (2005) Infect. Immunol., 73, pp. 201-207
  • Veh, R.W., Michalski, J.C., Corfield, A.P., Sander-Wewer, M., Gies, D., Schauer, R., (1981) J. Chromatogr., 212, pp. 313-322
  • Lineweaver, G., Burk, D., (1934) J. Am. Chem. Soc., 56, pp. 658-666

Citas:

---------- APA ----------
Agustí, R., Giorgi, M.E. & de Lederkremer, R.M. (2007) . The trans-sialidase from Trypanosoma cruzi efficiently transfers α-(2→3)-linked N-glycolylneuraminic acid to terminal β-galactosyl units. Carbohydrate Research, 342(16), 2465-2469.
http://dx.doi.org/10.1016/j.carres.2007.07.018
---------- CHICAGO ----------
Agustí, R., Giorgi, M.E., de Lederkremer, R.M. "The trans-sialidase from Trypanosoma cruzi efficiently transfers α-(2→3)-linked N-glycolylneuraminic acid to terminal β-galactosyl units" . Carbohydrate Research 342, no. 16 (2007) : 2465-2469.
http://dx.doi.org/10.1016/j.carres.2007.07.018
---------- MLA ----------
Agustí, R., Giorgi, M.E., de Lederkremer, R.M. "The trans-sialidase from Trypanosoma cruzi efficiently transfers α-(2→3)-linked N-glycolylneuraminic acid to terminal β-galactosyl units" . Carbohydrate Research, vol. 342, no. 16, 2007, pp. 2465-2469.
http://dx.doi.org/10.1016/j.carres.2007.07.018
---------- VANCOUVER ----------
Agustí, R., Giorgi, M.E., de Lederkremer, R.M. The trans-sialidase from Trypanosoma cruzi efficiently transfers α-(2→3)-linked N-glycolylneuraminic acid to terminal β-galactosyl units. Carbohydr. Res. 2007;342(16):2465-2469.
http://dx.doi.org/10.1016/j.carres.2007.07.018