Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The adiabatic potential energy surfaces (PES) of six trisaccharides, sulfated derivatives of α-d-Galp-(1→3)-β-d-Galp-(1→4)-α-d-Galp and β-d-Galp-(1→4)-α-d-Galp-(1→3)-β-d-Galp representing models of λ-, μ-, and ν-carrageenans were obtained using the mm3 force-field at ε = 3. Each PES was described by a single contour map for which the energy is plotted against the two ψ glycosidic angles, given the small variations of the φ{symbol} glycosidic torsional angle in the low-energy regions of disaccharide maps. Most surfaces appear as expected from the maps of the disaccharidic repeating units of carrageenans, with less important factors altering the additive effect of both linkages. Only small interactions between the first and third monosaccharidic moieties of the trisaccharides are observed. The flexibility of the α-linkages appears nearly identical to that in their disaccharide counterparts, with only one exception, where it appears reduced by the presence of the third monosaccharide. On the other hand, the flexibility of the β-linkage appears to be equal or sometimes even higher than that observed for the corresponding disaccharide. © 2006 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:mm3 Potential energy surfaces of trisaccharide models of λ-, μ-, and ν-carrageenans
Autor:Stortz, C.A.
Filiación:Departamento de Química Orgánica-CIHIDECAR, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Carrageenans; mm3; Molecular mechanics; Potential energy surfaces; Trisaccharides; Carrageenans; Molecular mechanics; Potential energy surfaces (PES); Trisaccharides; Derivatives; Mathematical models; Molecular dynamics; Potential energy; Surface structure; Carbohydrates; carbohydrate; carrageenan; disaccharide; monosaccharide; trisaccharide; article; carbohydrate analysis; conformation; cross linking; energy; molecular interaction; molecular mechanics; molecular model; priority journal; structure analysis; surface property; Carbohydrate Conformation; Carbohydrate Sequence; Carrageenan; Galactose; Models, Molecular; Molecular Sequence Data; Stress, Mechanical; Surface Properties; Thermodynamics; Trisaccharides
Año:2006
Volumen:341
Número:15
Página de inicio:2531
Página de fin:2542
DOI: http://dx.doi.org/10.1016/j.carres.2006.08.013
Título revista:Carbohydrate Research
Título revista abreviado:Carbohydr. Res.
ISSN:00086215
CODEN:CRBRA
CAS:carrageenan, 9000-07-1, 9049-05-2, 9061-82-9, 9064-57-7; Carrageenan, 9000-07-1; Galactose, 26566-61-0; Trisaccharides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00086215_v341_n15_p2531_Stortz

Referencias:

  • Stortz, C.A., (2005) Arkivoc, xii, pp. 22-35. , http://www.arkat-usa.org, )
  • Stortz, C.A., (2005) Handbook of Carbohydrate Engineering, pp. 211-245. , Yarema K.J. (Ed), Taylor and Francis, Boca Raton
  • Janaswamy, S., Chandrasekaran, R., (2001) Carbohydr. Res., 335, pp. 181-194
  • Janaswamy, S., Chandrasekaran, R., (2002) Carbohydr. Res., 337, pp. 523-535
  • Lamba, D., Segre, A.L., Glover, S., Mackie, W., Sheldrick, B., Pérez, S., (1990) Carbohydr. Res., 208, pp. 215-230
  • Lamba, D., Burden, C., Mackie, W., Sheldrick, B., (1986) Carbohydr. Res., 155, pp. 11-17
  • Ragazzi, M., Ferro, D., Provasoli, A., (1986) J. Comput. Chem., 7, pp. 105-112
  • Ferro, D.R., Pumilia, P., Cassinari, A., Ragazzi, M., (1995) Int. J. Biol. Macromol., 17, pp. 131-136
  • Huige, C.J.M., Altona, C., (1995) J. Comput. Chem., 16, pp. 56-79
  • Ferro, D.R., Pumilia, P., Ragazzi, M., (1997) J. Comput. Chem., 18, pp. 351-367
  • Lamba, D., Glover, S., Mackie, W., Rashid, A., Sheldrick, B., Pérez, S., (1994) Glycobiology, 4, pp. 151-163
  • Le Questel, J.-Y., Cros, S., Mackie, W., Pérez, S., (1995) Int. J. Biol. Macromol., 17, pp. 161-175
  • Parra, E., Caro, H.-N., Jiménez-Barbero, J., Martín-Lomas, M., Bernabé, M., (1990) Carbohydr. Res., 208, pp. 83-92
  • Urbani, R., Di Blas, A., Cesàro, A., (1993) Int. J. Biol. Macromol., 15, pp. 24-29
  • Stortz, C.A., Cerezo, A.S., (1994) J. Carbohydr. Chem., 13, pp. 235-247
  • Stortz, C.A., Cerezo, A.S., (1995) An. Asoc. Quim. Argent., 83, pp. 171-181
  • Ueda, K., Ochiai, H., Imamura, A., Nakagawa, S., (1995) Bull. Chem. Soc. Jpn., 68, pp. 95-106
  • Ueda, K., Brady, J.W., (1996) Biopolymers, 38, pp. 461-469
  • Stortz, C.A., Cerezo, A.S., (1998) J. Carbohydr. Chem., 17, pp. 1405-1419
  • Stortz, C.A., (1999) Carbohydr. Res., 322, pp. 77-86
  • Stortz, C.A., Cerezo, A.S., (2000) J. Carbohydr. Chem., 19, pp. 1115-1130
  • Ueda, K., Saiki, M., Brady, J.W., (2001) J. Phys. Chem. B, 105, pp. 8629-8638
  • Ueda, K., Iwama, K., Nakayama, H., (2001) Bull. Chem. Soc. Jpn., 74, pp. 2269-2277
  • Stortz, C.A., (2002) Carbohydr. Res., 337, pp. 2311-2323
  • Bosco, M., Segre, A., Miertus, S., Cesàro, A., Paoletti, S., (2005) Carbohydr. Res., 340, pp. 943-958
  • Allinger, N.L., Yuh, Y.H., Lii, J.-H., (1989) J. Am. Chem. Soc., 111, pp. 8551-8566
  • Allinger, N.L., Rahman, M., Lii, J.-H., (1990) J. Am. Chem. Soc., 112, pp. 8293-8307
  • Mendonca, S., Johnson, G.P., French, A.D., Laine, R.A., (2002) J. Phys. Chem. A, 106, pp. 4115-4124
  • Homans, S.W., (1990) Biochemistry, 29, pp. 9110-9118
  • Homans, S.W., Forster, M., (1992) Glycobiology, 2, pp. 143-151
  • French, A.D., Mouhous-Riou, N., Pérez, S., (1993) Carbohydr. Res., 247, pp. 51-62
  • Koča, J., Pérez, S., Imberty, A., (1995) J. Comput. Chem., 16, pp. 296-310
  • Mazeau, K., Pérez, S., (1998) Carbohydr. Res., 311, pp. 203-217
  • Stortz, C.A., Cerezo, A.S., (2002) Carbohydr. Res., 337, pp. 1861-1871
  • Stortz, C.A., Cerezo, A.S., (2003) Carbohydr. Res., 338, pp. 95-107
  • Stortz, C.A., Cerezo, A.S., (2003) Biopolymers, 70, pp. 227-239
  • Stortz, C.A., Cerezo, A.S., (2003) Carbohydr. Res., 338, pp. 1679-1689
  • Stortz, C.A., (2004) Carbohydr. Res., 339, pp. 2381-2390
  • Stortz, C.A., (2005) J. Comput. Chem., 26, pp. 471-483
  • (1997) Bull. QCPE, 17, p. 3
  • Engelsen, S.B., Koca, J., Braccini, I., Hervé du Penhoat, C., Pérez, S., (1995) Carbohydr. Res., 276, pp. 1-29
  • Stortz, C.A., Cerezo, A.S., (2003) J. Carbohydr. Chem., 22, pp. 217-239
  • Rees, D.A., Scott, W.E., (1971) J. Chem. Soc. B, pp. 469-479
  • Bayley, S.T., (1955) Biochim. Biophys. Acta, 17, pp. 194-205
  • Millane, R.P., Nzewi, E.U., Arnott, S., (1989) Frontiers in Carbohydrate Chemistry, pp. 104-131. , Millane R.P., BeMiller J.N., and Chandrasekaran R. (Eds), Elsevier, London

Citas:

---------- APA ----------
(2006) . mm3 Potential energy surfaces of trisaccharide models of λ-, μ-, and ν-carrageenans. Carbohydrate Research, 341(15), 2531-2542.
http://dx.doi.org/10.1016/j.carres.2006.08.013
---------- CHICAGO ----------
Stortz, C.A. "mm3 Potential energy surfaces of trisaccharide models of λ-, μ-, and ν-carrageenans" . Carbohydrate Research 341, no. 15 (2006) : 2531-2542.
http://dx.doi.org/10.1016/j.carres.2006.08.013
---------- MLA ----------
Stortz, C.A. "mm3 Potential energy surfaces of trisaccharide models of λ-, μ-, and ν-carrageenans" . Carbohydrate Research, vol. 341, no. 15, 2006, pp. 2531-2542.
http://dx.doi.org/10.1016/j.carres.2006.08.013
---------- VANCOUVER ----------
Stortz, C.A. mm3 Potential energy surfaces of trisaccharide models of λ-, μ-, and ν-carrageenans. Carbohydr. Res. 2006;341(15):2531-2542.
http://dx.doi.org/10.1016/j.carres.2006.08.013