Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Different conformations of methyl 3,6-anhydroglycosides with the β-D-galacto, α-D-galacto, and β-D-gluco configurations were studied by molecular mechanics (using the program MM3) and by quantum mechanical (QM) methods at the HF/- and B3LYP/6-31+G** levels, with and without solvent emulation. Using molecular mechanics, the energies were plotted against the φ, θ puckering coordinates of Cremer and Pople. In such strained systems, only two extreme conformations of the six-membered ring are likely: 1C4 and B1,4, or any one close to either of them. Results show the preponderance of a distorted chair conformation over that of the distorted boat, though the energy difference is lower and the distortions are larger for the compound with the β-D-galacto configuration. For derivatives of this compound, experimental data in solution indicate both chair and boat forms, depending on the compound and the solvent, whereas for the remaining compounds, experimental data always show the preponderance of the chair conformation. The more accurate DFT calculations lead to the lower energy differences, suggesting that HF and MM3 underestimate the stability of the boat-like conformations. Similar studies on model compounds depict the importance of the anomeric effect in the conformational preferences. © 2005 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Modeling ring puckering in strained systems: Application to 3,6-anhydroglycosides
Autor:Navarro, D.A.; Stortz, C.A.
Filiación:Departamento de Química Orgánica-CIHIDECAR, Facultad de Ciencias Exactas Y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:3,6-Anhydrogalactose; Anhydro sugars; DFT; MM3; Puckering; Conformations; Glycols; Energy differences; Molecular mechanics; Puckering; Quantum theory; beta galactosidase; beta glucosidase; glycoside; solvent; analytical parameters; article; calculation; carbohydrate analysis; chair; computer program; conformation; data analysis; energy; molecular mechanics; molecular model; plots and curves; priority journal; quantum chemistry; quantum mechanics; Carbohydrate Conformation; Computer Simulation; Galactose; Glycosides; Thermodynamics
Año:2005
Volumen:340
Número:12
Página de inicio:2030
Página de fin:2038
DOI: http://dx.doi.org/10.1016/j.carres.2005.05.022
Título revista:Carbohydrate Research
Título revista abreviado:Carbohydr. Res.
ISSN:00086215
CODEN:CRBRA
CAS:beta glucosidase, 51683-43-3, 9001-22-3; 3,6-anhydrogalactose; Galactose, 26566-61-0; Glycosides
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00086215_v340_n12_p2030_Navarro

Referencias:

  • French, A.D., Brady, J.W., (1989) ACS Symp. Ser., 430, pp. 1-19
  • Dowd, M.K., French, A.D., Reilly, P.J., (1994) Carbohydr. Res., 264, pp. 1-19
  • Zsiška, M., Meyer, B., (1993) Carbohydr. Res., 243, pp. 225-258
  • Ragazzi, M., Ferro, D.R., Provasoli, A., (1986) J. Comput. Chem., 7, pp. 105-112
  • Cremer, D., Pople, J.A., (1975) J. Am. Chem. Soc., 97, pp. 1354-1358
  • Jeffrey, G.A., Yates, J.H., (1979) Carbohydr. Res., 74, pp. 319-322
  • Joshi, N.V., Rao, V.S.R., (1979) Biopolymers, 18, pp. 2993-3004
  • Ferro, D.R., Provasoli, A., Ragazzi, M., (1992) Carbohydr. Res., 228, pp. 439-443
  • French, A.D., Dowd, M.K., (1994) J. Comput. Chem., 15, pp. 561-570
  • Pickett, H.M., Strauss, H.L., (1970) J. Am. Chem. Soc., 92, pp. 7281-7290
  • Dowd, M.K., Rockey, W.M., French, A.D., Reilly, P.J., (2002) J. Carbohydr. Chem., 21, pp. 11-25
  • Rockey, W.M., Dowd, M.K., Reilly, P.J., French, A.D., (2001) Carbohydr. Res., 335, pp. 261-273
  • Stortz, C.A., Cerezo, A.S., (2000) Curr. Top. Phytochem., 4, pp. 121-134
  • Schafer, S.E., Stevens, E.S., Dowd, M.K., (1995) Carbohydr. Res., 270, pp. 217-220
  • Mazurek, A.P., Szeja, W., (1985) J. Chem. Soc., Perkin Trans. 2, pp. 57-58
  • Campbell, J.W., Harding, M.M., (1972) J. Chem. Soc., Perkin Trans. 2, pp. 1721-1723
  • Lindberg, B., Lindberg, B., Svensson, S., (1973) Acta Chem. Scand., 27, pp. 373-374
  • France, C.J., McFarlane, I.M., Newton, C.G., Pitchen, P., Barton, D.H.R., (1991) Tetrahedron, 32, pp. 6381-6388
  • McDonnell, C., López, O., Murphy, P., Fernández Bolaños, J.G., Hazell, R., Bols, M., (2004) J. Am. Chem. Soc., 126, pp. 12374-12385
  • Rashid, A., MacKie, W., (1992) Carbohydr. Res., 223, pp. 147-155
  • Meltzer, P.C., Blundell, P., Chen, Z., Yong, Y.F., Madras, B.K., (1999) Bioorg. Med. Chem. Lett., 9, pp. 857-862
  • Meltzer, P.C., Liang, A.Y., Blundell, P., Gonzalez, M.D., Chen, Z., George, C., Madras, B.K., (1997) J. Med. Chem., 40, pp. 2661-2673
  • Holmquist, C.R., Keverline-Frank, K.I., Abraham, P., Boja, J.W., Kuhar, M.J., Carroll, F.I., (1996) J. Med. Chem., 39, pp. 4139-4141
  • Allinger, N.L., Yuh, Y.H., Lii, J.-H., (1989) J. Am. Chem. Soc., 111, pp. 8551-8566
  • Allinger, N.L., Rahman, M., Lii, J.-H., (1990) J. Am. Chem. Soc., 112, pp. 8293-8307
  • Stortz, C.A., (2005) J. Comput. Chem., 26, pp. 471-483
  • (1997) Bull. QCPE, 17 (1), p. 3. , MM3 (96)
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (1998) Gaussian 98, Revision A.7, , Gaussian, Inc., Pittsburgh, PA
  • Barone, V., Cossi, M., Tomasi, J., (1998) J. Comput. Chem., 19, pp. 404-417
  • Csonka, G.I., (2002) J. Mol. Struct. (Theochem), 584, pp. 1-4
  • Lamba, D., Segre, A.L., Glover, S., MacKie, W., Sheldrick, B., Pérez, S., (1990) Carbohydr. Res., 208, pp. 215-230
  • Izumi, K., (1973) Carbohydr. Res., 27, pp. 278-281
  • Haasnoot, C.A.G., De Leeuw, F.A.A.M., Altona, C., (1980) Tetrahedron, 36, pp. 2783-2792
  • Isaacs, N.W., Kennard, C.H.L., (1972) J. Chem. Soc., Perkin Trans. 2, pp. 582-585
  • Yamamura, H., Nagaoka, H., Kawai, M., Butsugan, Y., Einaga, H., (1996) Chem. Commun. (Cambridge), pp. 1069-1070
  • Ashton, P.R., Gattuso, G., Königer, R., Stoddart, J.F., Williams, D.J., (1996) J. Org. Chem., 61, pp. 9553-9555
  • Stevens, E.S., (1993) Carbohydr. Res., 244, pp. 191-195

Citas:

---------- APA ----------
Navarro, D.A. & Stortz, C.A. (2005) . Modeling ring puckering in strained systems: Application to 3,6-anhydroglycosides. Carbohydrate Research, 340(12), 2030-2038.
http://dx.doi.org/10.1016/j.carres.2005.05.022
---------- CHICAGO ----------
Navarro, D.A., Stortz, C.A. "Modeling ring puckering in strained systems: Application to 3,6-anhydroglycosides" . Carbohydrate Research 340, no. 12 (2005) : 2030-2038.
http://dx.doi.org/10.1016/j.carres.2005.05.022
---------- MLA ----------
Navarro, D.A., Stortz, C.A. "Modeling ring puckering in strained systems: Application to 3,6-anhydroglycosides" . Carbohydrate Research, vol. 340, no. 12, 2005, pp. 2030-2038.
http://dx.doi.org/10.1016/j.carres.2005.05.022
---------- VANCOUVER ----------
Navarro, D.A., Stortz, C.A. Modeling ring puckering in strained systems: Application to 3,6-anhydroglycosides. Carbohydr. Res. 2005;340(12):2030-2038.
http://dx.doi.org/10.1016/j.carres.2005.05.022