Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The adiabatic potential energy surfaces of four disaccharides and four trisaccharides of l-fucose with α-(1 → 3)-linkages were obtained using mm3. The adiabatic potential energy surfaces (PES) of α-l-Fuc-(1 → 3)-α-l-Fuc and their counterparts disulfated at 2,2′ and 4,4′, and tetrasulfated at 2,2′,4,4′, which are representative of fucoidan structures, were obtained using the mm3 force field, and plotted as contour maps and as 2D graphs representing the energy versus the ψ angle. The surfaces of the corresponding trisaccharides were also obtained and represented by a single 3D contour map for which the energy is plotted against the two ψ glycosidic angles. For the nonsulfated disaccharide, similar populations of two minima occur. A substantial sulfate effect is observed. Whereas sulfation on both of the 2-positions shift the global minimum to positive ψ H angles, sulfation on both of the 4-positions deepen the well at negative ψ H values. A similar effect occurred in their galactose counterparts. Sulfation on the 2- and 4-positions carry the additive effect of both groups. The same trend was observed for both linkages present in the trisaccharides, with minor differences. For instance, the 4,4′,4″ trisulfated compound exhibits a trend by which the glycosidic linkage closer to the nonreducing end appears to be highly flexible, with similar energies in both conformers. Raising the dielectric constant on nonsulfated oligosaccharides was found to give a better agreement with experimental determinations. © 2004 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:MM3 Potential energy surfaces of α-3-linked L-fucobiose and fucotriose and their sulfated counterparts
Autor:Stortz, C.A.
Filiación:Depto. de Quim. Organ.-CIHIDECAR, Fac. de Ciencias Exactas Y Naturales, Univ. Buenos Aires, Cd. U., Argentina
Palabras clave:Conformational analysis; Fucoidans; Fucose; mm3; Molecular mechanics; Potential energy surfaces; Ramachandran map; Trisaccharides; Fucotriose; Potential energy surfaces (PES); Conformations; Dielectric materials; Potential energy; Structure (composition); Sulfur compounds; Carbohydrates; disaccharide; galactose; glycoside; trisaccharide; article; carbohydrate analysis; chemical bond; conformation; dielectric constant; energy; molecular mechanics; priority journal; sulfation; surface property; Disaccharides; Molecular Structure; Polysaccharides; Sulfates; Thermodynamics; Trisaccharides
Año:2004
Volumen:339
Número:14
Página de inicio:2381
Página de fin:2390
DOI: http://dx.doi.org/10.1016/j.carres.2004.06.024
Título revista:Carbohydrate Research
Título revista abreviado:Carbohydr. Res.
ISSN:00086215
CODEN:CRBRA
CAS:galactose, 26566-61-0, 50855-33-9, 59-23-4; Disaccharides; Polysaccharides; Sulfates; Trisaccharides; fucoidan, 9072-19-9; fucopyranosyl-1-3-fucopyranose; fucopyranosyl-1-3-fucopyranosyl-1-3-fucopyranose
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00086215_v339_n14_p2381_Stortz

Referencias:

  • Stortz, C.A., Cerezo, A.S., (2003) Carbohydr. Res., 338, pp. 1679-1689
  • French, A.D., Brady, J.W., (1990) ACS Symp. Ser., 430, pp. 1-19
  • Tran, V., Buléon, A., Imberty, A., Pérez, S., (1989) Biopolymers, 28, pp. 679-690
  • Stortz, C.A., (1999) Carbohydr. Res., 322, pp. 77-86
  • Dowd, M.K., Zeng, J., French, A.D., Reilly, P.J., (1992) Carbohydr. Res., 230, pp. 223-244
  • Dowd, M.K., French, A.D., Reilly, P.J., (1992) Carbohydr. Res., 233, pp. 15-34
  • Dowd, M.K., French, A.D., Reilly, P.J., (1995) J. Carbohydr. Chem., 14, pp. 589-600
  • Mendonca, S., Johnson, G.P., French, A.D., Laine, R.A., (2002) J. Phys. Chem. a, 106, pp. 4115-4124
  • Allinger, N.L., Yuh, Y.H., Lii, J.-H., (1989) J. Am. Chem. Soc., 111, pp. 8551-8566
  • Allinger, N.L., Rahman, M., Lii, J.-H., (1990) J. Am. Chem. Soc., 112, pp. 8293-8307
  • Stortz, C.A., Cerezo, A.S., (2002) Carbohydr. Res., 337, pp. 1861-1871
  • Stortz, C.A., Cerezo, A.S., (2003) Carbohydr. Res., 338, pp. 95-107
  • Stortz, C.A., Cerezo, A.S., (2003) Biopolymers, 70, pp. 227-239
  • Ponce, N.M.A., Pujol, C.A., Damonte, E.B., Flores, M.L., Stortz, C.A., (2003) Carbohydr. Res., 338, pp. 153-165
  • Ribeiro, A.C., Vieira, R.P., Mourão, P.A.S., Mulloy, B., (1994) Carbohydr. Res., 255, pp. 225-240
  • Mulloy, B., Ribeiro, A.C., Alves, A.P., Vieira, R.P., Mourão, P.A.S., (1994) J. Biol. Chem., 269, pp. 22113-22123
  • Bilan, M.I., Grachev, A.A., Ustuzhanina, N.E., Shashkov, A.S., Nifantiev, N.E., Usov, A.I., (2004) Carbohydr. Res., 339, pp. 511-517
  • Khatuntseva, E.A., Ustuzhanina, N.E., Zatonskii, G.V., Shashkov, A.S., Usov, A.I., Nifant'ev, N.E., (2000) J. Carbohydr. Chem., 19, pp. 1151-1173
  • Gerbst, A.G., Ustuzhanina, N.E., Grachev, A.A., Zlotina, N.S., Khatuntseva, E.A., Tsvetkov, D.E., Shashkov, A.S., Nifantiev, N.E., (2002) J. Carbohydr. Chem., 21, pp. 313-324
  • Gerbst, A.G., Ustuzhanina, N.E., Grachev, A.A., Khatuntseva, E.A., Tsvetkov, D.E., Shashkov, A.S., Usov, A.I., Nifantiev, N.E., (2003) J. Carbohydr. Chem., 22, pp. 109-122
  • (1997) Bull. QCPE, 17 (1), p. 3
  • Lamba, D., Glover, S., MacKie, W., Rashid, A., Sheldrick, B., Pérez, S., (1994) Glycobiology, 4, pp. 151-163
  • Engelsen, S.B., Koča, J., Braccini, I., Hervé Du Penhoat, C., Pérez, S., (1995) Carbohydr. Res., 276, pp. 1-29
  • Imberty, A., Tran, V., Pérez, S., (1989) J. Comput. Chem., 11, pp. 205-216
  • Schirmer, R.E., Noggle, J.H., Davis, J.P., Hart, P.A., (1970) J. Am. Chem. Soc., 92, pp. 3266-3273
  • Stortz, C.A., Cerezo, A.S., (1998) J. Carbohydr. Chem., 17, pp. 1405-1419
  • Stortz, C.A., (2002) Carbohydr. Res., 337, pp. 2311-2323
  • Koča, J., Pérez, S., Imberty, A., (1995) J. Comput. Chem., 16, pp. 296-310
  • Luger, P., Vangehr, K., Bock, K., Paulsen, H., (1983) Carbohydr. Res., 117, pp. 23-38
  • Stortz, C.A., Cerezo, A.S., (2002) J. Carbohydr. Chem., 21, pp. 355-371
  • Stortz, C.A., Cerezo, A.S., (2003) J. Carbohydr. Chem., 22, pp. 217-239

Citas:

---------- APA ----------
(2004) . MM3 Potential energy surfaces of α-3-linked L-fucobiose and fucotriose and their sulfated counterparts. Carbohydrate Research, 339(14), 2381-2390.
http://dx.doi.org/10.1016/j.carres.2004.06.024
---------- CHICAGO ----------
Stortz, C.A. "MM3 Potential energy surfaces of α-3-linked L-fucobiose and fucotriose and their sulfated counterparts" . Carbohydrate Research 339, no. 14 (2004) : 2381-2390.
http://dx.doi.org/10.1016/j.carres.2004.06.024
---------- MLA ----------
Stortz, C.A. "MM3 Potential energy surfaces of α-3-linked L-fucobiose and fucotriose and their sulfated counterparts" . Carbohydrate Research, vol. 339, no. 14, 2004, pp. 2381-2390.
http://dx.doi.org/10.1016/j.carres.2004.06.024
---------- VANCOUVER ----------
Stortz, C.A. MM3 Potential energy surfaces of α-3-linked L-fucobiose and fucotriose and their sulfated counterparts. Carbohydr. Res. 2004;339(14):2381-2390.
http://dx.doi.org/10.1016/j.carres.2004.06.024