Artículo

Alamino, V.A.; Mascanfroni, I.D.; Montesinos, M.M.; Gigena, N.; Donadio, A.C.; Blidner, A.G.; Milotich, S.I.; Cheng, S.-Y.; Masini-Repiso, A.M.; Rabinovich, G.A.; Pellizas, C.G. "Antitumor responses stimulated by dendritic cells are improved by triiodothyronine binding to the thyroid hormone receptor β" (2015) Cancer Research. 75(7):1265-1274
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Bidirectional cross-talk between the neuroendocrine and immune systems orchestrates immune responses in both physiologic and pathologic settings. In this study, we provide in vivo evidence of a critical role for the thyroid hormone triiodothyronine (T3) in controlling the maturation and antitumor functions of dendritic cells (DC). We used a thyroid hormone receptor (TR) β mutant mouse (TRβPV) to establish the relevance of the T3-TRβ system in vivo. In this model, TRβ signaling endowed DCs with the ability to stimulate antigen-specific cytotoxic T-cell responses during tumor development. T3 binding to TRβ increased DC viability and augmented DC migration to lymph nodes. Moreover, T3 stimulated the ability of DCs to cross-present antigens and to stimulate cytotoxic T-cell responses. In a B16-OVA mouse model of melanoma, vaccination with T3-stimulated DCs inhibited tumor growth and prolonged host survival, in part by promoting the generation of IFNγ-producing CD8+ T cells. Overall, our results establish an adjuvant effect of T3-TRβ signaling in DCs, suggesting an immediately translatable method to empower DC vaccination approaches for cancer immunotherapy. ©2015 AACR.

Registro:

Documento: Artículo
Título:Antitumor responses stimulated by dendritic cells are improved by triiodothyronine binding to the thyroid hormone receptor β
Autor:Alamino, V.A.; Mascanfroni, I.D.; Montesinos, M.M.; Gigena, N.; Donadio, A.C.; Blidner, A.G.; Milotich, S.I.; Cheng, S.-Y.; Masini-Repiso, A.M.; Rabinovich, G.A.; Pellizas, C.G.
Filiación:Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordóba, Argentina
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Hospital Materno-Neonatal Ramón Carrillo, Sanatorio Allende, Córdoba, Argentina
Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
Palabras clave:cytokine; gamma interferon; liothyronine; thyroid hormone; thyroid hormone receptor beta; liothyronine; thyroid hormone receptor beta; animal cell; animal experiment; animal model; antigen presenting cell; antigen specificity; Article; cancer immunotherapy; CD8+ T lymphocyte; cell migration; cell viability; controlled study; cytokine production; cytotoxic T lymphocyte; dendritic cell; female; immune response; in vivo study; innate immunity; lymph node; melanoma; mouse; nonhuman; priority journal; receptor binding; T lymphocyte; tumor growth; animal; C57BL mouse; cell motion; cell survival; cross presentation; cytotoxicity; dendritic cell; immunology; immunotherapy; Melanoma, Experimental; metabolism; transgenic mouse; Animals; CD8-Positive T-Lymphocytes; Cell Movement; Cell Survival; Cross-Priming; Cytotoxicity, Immunologic; Dendritic Cells; Female; Immunotherapy; Lymph Nodes; Melanoma, Experimental; Mice, Inbred C57BL; Mice, Transgenic; Thyroid Hormone Receptors beta; Triiodothyronine
Año:2015
Volumen:75
Número:7
Página de inicio:1265
Página de fin:1274
DOI: http://dx.doi.org/10.1158/0008-5472.CAN-14-1875
Título revista:Cancer Research
Título revista abreviado:Cancer Res.
ISSN:00085472
CODEN:CNREA
CAS:gamma interferon, 82115-62-6; liothyronine, 6138-47-2, 6893-02-3; Thyroid Hormone Receptors beta; Triiodothyronine
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00085472_v75_n7_p1265_Alamino

Referencias:

  • Butts, C.L., Sternberg, E.M., Neuroendocrine factors alter host defense by modulating immune function (2008) Cell Immunol, 252, pp. 7-15
  • Mullur, R., Liu, Y.Y., Brent, G.A., Thyroid hormone regulation of metabolism (2014) Physiol Rev, 94, pp. 355-382
  • Wong, R., Vasilyev, V.V., Ting, Y.T., Kutler, D.I., Willingham, M.C., Weintraub, B.D., Transgenic mice bearing a human mutant thyroid hormone beta 1 receptor manifest thyroid function anomalies, weight reduction, and hyperactivity (1997) Mol Med, 3, pp. 303-314
  • Hayashi, Y., Xie, J., Weiss, R.E., Pohlenz, J., Refetoff, S., Selective pituitary resistance to thyroid hormone produced by expression of a mutant thyroid hormone receptor beta gene in the pituitary gland of transgenic mice (1998) Biochem Biophys Res Commun, 245, pp. 204-210
  • Abel, E.D., Kaulbach, H.C., Campos-Barros, A., Ahima, R.S., Boers, M.E., Hashimoto, K., Novel insight from transgenic mice into thyroid hormone resistance and the regulation of thyrotropin (1999) J Clin Invest, 103, pp. 271-279
  • Kaneshige, M., Kaneshige, K., Zhu, X., Dace, A., Garrett, L., Carter, T.A., Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone (2000) Proc Natl Acad Sci U S A, 97, pp. 13209-13214
  • Kim, W.G., Cheng, S.Y., Thyroid hormone receptors and cancer (2013) Biochim Biophys Acta, 1830, pp. 3928-3936
  • Satpathy, A.T., Wu, X., Albring, J.C., Murphy, K.M., Re(de)fining the dendritic cell lineage (2012) Nat Immunol, 13, pp. 1145-1154
  • Joffre, O.P., Segura, E., Savina, A., Amigorena, S., Cross-presentation by dendritic cells (2012) Nat Rev Immunol, 12, pp. 557-569
  • Kirkwood, J.M., Butterfield, L.H., Tarhini, A.A., Zarour, H., Kalinski, P., Ferrone, S., Immunotherapy of cancer in 2012 (2012) CA Cancer J Clin, 62, pp. 309-335
  • Palucka, K., Banchereau, J., Cancer immunotherapy via dendritic cells (2012) Nat Rev Cancer, 12, pp. 265-277
  • Park, D., Lapteva, N., Seethammagari, M., Slawin, K.M., Spencer, D.M., An essential role for Akt1 in dendritic cell function and tumor immunotherapy (2006) Nat Biotechnol, 24, pp. 1581-1590
  • De Vito, P., Balducci, V., Leone, S., Percario, Z., Mangino, G., Davis, P.J., Nongenomic effects of thyroid hormones on the immune system cells: New targets, old players (2012) Steroids, 77, pp. 988-995
  • De Vito, P., Incerpi, S., Pedersen, J.Z., Luly, P., Davis, F.B., Davis, P.J., Thyroid hormones as modulators of immune activities at the cellular level (2011) Thyroid, 21, pp. 879-890
  • Mascanfroni, I., Montesinos, Md.M., Susperreguy, S., Cervi, L., Ilarregui, J.M., Ramseyer, V.D., Control of dendritic cell maturation and function by triiodothyronine (2008) FASEB J, 22, pp. 1032-1042
  • Mascanfroni, I.D., Montesinos, Md.M., Alamino, V.A., Susperreguy, S., Nicola, J.P., Ilarregui, J.M., Nuclear factor (NF)-kappaB-dependent thyroid hormone receptor beta1 expression controls dendritic cell function via Akt signaling (2010) J Biol Chem, 285, pp. 9569-9582
  • Montesinos, M.M., Alamino, V.A., Mascanfroni, I.D., Susperreguy, S., Gigena, N., Masini-Repiso, A.M., Dexamethasone counteracts the immunostimulatory effects of triiodothyronine (T3) on dendritic cells (2012) Steroids, 77, pp. 67-76
  • Reizis, B., Bunin, A., Ghosh, H.S., Lewis, K.L., Sisirak, V., Plasmacytoid dendritic cells: Recent progress and open questions (2011) Annu Rev Immunol, 29, pp. 163-183
  • Calbo, S., Delagreverie, H., Arnoult, C., Authier, F.J., Tron, F., Boyer, O., Functional tolerance of CD8+ T cells induced by muscle-specific antigen expression (2008) J Immunol, 181, pp. 408-417
  • Guermonprez, P., Saveanu, L., Kleijmeer, M., Davoust, J., Van Endert, P., Amigorena, S., ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells (2003) Nature, 425, pp. 397-402
  • Bellone, M., Cantarella, D., Castiglioni, P., Crosti, M.C., Ronchetti, A., Moro, M., Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma (2000) J Immunol, 165, pp. 2651-2656
  • Hokey, D.A., Larregina, A.T., Erdos, G., Watkins, S.C., Falo, L.D., Jr., Tumor cell loaded type-1 polarized dendritic cells induce Th1-mediated tumor immunity (2005) Cancer Res, 65, pp. 10059-10067
  • Andreani, V., Gatti, G., Simonella, L., Rivero, V., Maccioni, M., Activation of Toll-like receptor 4 on tumor cells in vitro inhibits subsequent tumor growth in vivo (2007) Cancer Res, 67, pp. 10519-10527
  • Kono, M., Nakamura, Y., Suda, T., Uchijima, M., Tsujimura, K., Nagata, T., Enhancement of protective immunity against intracellular bacteria using type-1 polarized dendritic cell (DC) vaccine (2012) Vaccine, 30, pp. 2633-2639
  • Pinzon-Charry, A., Maxwell, T., McGuckin, M.A., Schmidt, C., Furnival, C., Lopez, J.A., Spontaneous apoptosis of blood dendritic cells in patients with breast cancer (2006) Breast Cancer Res, 8, p. R5
  • Um, S.H., Mulhall, C., Alisa, A., Ives, A.R., Karani, J., Williams, R., Alpha-fetoprotein impairs APC function and induces their apoptosis (2004) J Immunol, 173, pp. 1772-1778
  • Peguet-Navarro, J., Sportouch, M., Popa, I., Berthier, O., Schmitt, D., Portoukalian, J., Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis (2003) J Immunol, 170, pp. 3488-3494
  • Kushwah, R., Hu, J., Dendritic cell apoptosis: Regulation of tolerance versus immunity (2010) J Immunol, 185, pp. 795-802
  • Rozkova, D., Horvath, R., Bartunkova, J., Spisek, R., Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors (2006) Clin Immunol, 120, pp. 260-271
  • Hou, W.S., Van Parijs, L., A Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells (2004) Nat Immunol, 5, pp. 583-589
  • Randolph, G.J., Angeli, V., Swartz, M.A., Dendritic-cell trafficking to lymph nodes through lymphatic vessels (2005) Nat Rev Immunol, 5, pp. 617-628
  • Cavanagh, L.L., Von Andrian, U.H., Travellers in many guises: The origins and destinations of dendritic cells (2002) Immunol Cell Biol, 80, pp. 448-462
  • Sallusto, F., Lanzavecchia, A., Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression (2000) Immunol Rev, 177, pp. 134-140
  • Jung, I.D., Lee, J.S., Kim, Y.J., Jeong, Y.I., Lee, C.M., Lee, M.G., Sphingosine kinase inhibitor suppresses dendritic cell migration by regulating chemokine receptor expression and impairing p38 mitogen-activated protein kinase (2007) Immunology, 121, pp. 533-544
  • Cintolo, J.A., Datta, J., Mathew, S.J., Czerniecki, B.J., Dendritic cell-based vaccines: Barriers and opportunities (2012) Future Oncol, 8, pp. 1273-1299
  • Berhanu, A., Huang, J., Alber, S.M., Watkins, S.C., Storkus, W.J., Combinational FLt3 ligand and granulocyte macrophage colony-stimulating factor treatment promotes enhanced tumor infiltration by dendritic cells and antitumor CD8(+) T-cell cross-priming but is ineffective as a therapy (2006) Cancer Res, 66, pp. 4895-4903
  • Hildner, K., Edelson, B.T., Purtha, W.E., Diamond, M., Matsushita, H., Kohyama, M., Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity (2008) Science, 322, pp. 1097-1100
  • Yoshikawa, T., Niwa, T., Mizuguchi, H., Okada, N., Nakagawa, S., Engineering of highly immunogenic long-lived DC vaccines by antiapoptotic protein gene transfer to enhance cancer vaccine potency (2008) Gene Ther, 15, pp. 1321-1329
  • Forster, R., Schubel, A., Breitfeld, D., Kremmer, E., Renner-Muller, I., Wolf, E., CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs (1999) Cell, 99, pp. 23-33
  • Sallusto, F., Schaerli, P., Loetscher, P., Schaniel, C., Lenig, D., Mackay, C.R., Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation (1998) Eur J Immunol, 28, pp. 2760-2769
  • Escribano, C., Delgado-Martin, C., Rodriguez-Fernandez, J.L., CCR7-dependent stimulation of survival in dendritic cells involves inhibition of GSK3beta (2009) J Immunol, 183, pp. 6282-6295
  • Barth, R.J., Jr., Mule, J.J., Spiess, P.J., Rosenberg, S.A., Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8 +tumor-infiltrating lymphocytes (1991) J Exp Med, 173, pp. 647-658
  • Fridman, W.H., Pages, F., Sautes-Fridman, C., Galon, J., The immune contexture in human tumours: Impact on clinical outcome (2012) Nat Rev Cancer, 12, pp. 298-306
  • Toomey, D., Conroy, H., Jarnicki, A.G., Higgins, S.C., Sutton, C., Mills, K.H., Therapeutic vaccination with dendritic cells pulsed with tumor-derived Hsp70 and a COX-2 inhibitor induces protective immunity against B16 melanoma (2008) Vaccine, 26, pp. 3540-3549
  • Lee, A.W., Truong, T., Bickham, K., Fonteneau, J.F., Larsson, M., Da Silva, I., A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: Implications for immunotherapy (2002) Vaccine, 20, pp. A8-A22
  • Palucka, A.K., Ueno, H., Connolly, J., Kerneis-Norvell, F., Blanck, J.P., Johnston, D.A., Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity (2006) J Immunother, 29, pp. 545-557
  • Kwissa, M., Nakaya, H.I., Oluoch, H., Pulendran, B., Distinct TLR adjuvants differentially stimulate systemic and local innate immune responses in nonhuman primates (2012) Blood, 119, pp. 2044-2055
  • Kato, Y., Ying, H., Willingham, M.C., Cheng, S.Y., A tumor suppressor role for thyroid hormone beta receptor in a mouse model of thyroid carcinogenesis (2004) Endocrinology, 145, pp. 4430-4438
  • Aranda, A., Martinez-Iglesias, O., Ruiz-Llorente, L., Garcia-Carpizo, V., Zambrano, A., Thyroid receptor: Roles in cancer (2009) Trends Endocrinol Metab, 20, pp. 318-324

Citas:

---------- APA ----------
Alamino, V.A., Mascanfroni, I.D., Montesinos, M.M., Gigena, N., Donadio, A.C., Blidner, A.G., Milotich, S.I.,..., Pellizas, C.G. (2015) . Antitumor responses stimulated by dendritic cells are improved by triiodothyronine binding to the thyroid hormone receptor β. Cancer Research, 75(7), 1265-1274.
http://dx.doi.org/10.1158/0008-5472.CAN-14-1875
---------- CHICAGO ----------
Alamino, V.A., Mascanfroni, I.D., Montesinos, M.M., Gigena, N., Donadio, A.C., Blidner, A.G., et al. "Antitumor responses stimulated by dendritic cells are improved by triiodothyronine binding to the thyroid hormone receptor β" . Cancer Research 75, no. 7 (2015) : 1265-1274.
http://dx.doi.org/10.1158/0008-5472.CAN-14-1875
---------- MLA ----------
Alamino, V.A., Mascanfroni, I.D., Montesinos, M.M., Gigena, N., Donadio, A.C., Blidner, A.G., et al. "Antitumor responses stimulated by dendritic cells are improved by triiodothyronine binding to the thyroid hormone receptor β" . Cancer Research, vol. 75, no. 7, 2015, pp. 1265-1274.
http://dx.doi.org/10.1158/0008-5472.CAN-14-1875
---------- VANCOUVER ----------
Alamino, V.A., Mascanfroni, I.D., Montesinos, M.M., Gigena, N., Donadio, A.C., Blidner, A.G., et al. Antitumor responses stimulated by dendritic cells are improved by triiodothyronine binding to the thyroid hormone receptor β. Cancer Res. 2015;75(7):1265-1274.
http://dx.doi.org/10.1158/0008-5472.CAN-14-1875