Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A linear Cantor setC with zero Lebesgue measure is associated with the countable collection of the bounded complementary open intervals. A rearrangment of C has the same lengths of its complementary intervals, but with different locations. We study the Hausdorff and packing h-measures and dimensional properties of the set of all rearrangments of some given C for general dimension functions h. For each set of complementary lengths, we construct a Cantor set rearrangement which has the maximal Hausdorff and the minimal packing h-premeasure, up to a constant. We also show that if the packing measure of this Cantor set is positive, then there is a rearrangement which has infinite packing measure. © Canadian Mathematical Society 2011.

Registro:

Documento: Artículo
Título:The sizes of rearrangements of cantor sets
Autor:Hare, K.E.; Mendivil, F.; Zuberman, L.
Filiación:Department of Pure Mathematics, University of Waterloo, Waterloo, ON, Canada
Department of Mathematics and Statistics, Acadia University, Wolfville, NS, Canada
Departamento de Matemática, FCEN-UBA, Buenos Aires, Argentina
Palabras clave:Cantor Sets; Cut-Out Set; Dimension Functions; Hausdorff Dimension; Packing Dimension
Año:2013
Volumen:56
Número:2
Página de inicio:354
Página de fin:365
DOI: http://dx.doi.org/10.4153/CMB-2011-167-7
Título revista:Canadian Mathematical Bulletin
Título revista abreviado:Can. Math. Bull.
ISSN:00084395
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00084395_v56_n2_p354_Hare

Referencias:

  • Borel, E., (1949) E'lements de la Th'eorie des Ensembles, , Editions Albin Michel Paris
  • Besicovitch, A.S., Taylor, S.J., On the complementary intervals of a linear closed set of zero lebesgue measure (1954) J.London Math.Soc, 29, pp. 449-459. , http://dx.doi.org/10.1112/jlms/s1-29.4.449
  • Cabrelli, C., Hare, K., Molter, U., Classifying cantor sets by their fractal dimension (2010) Proc.Amer.Math.Soc, 138 (11), pp. 3965-3974. , http://dx.doi.org/10.1090/S0002-9939-2010-10396-9
  • Cabrelli, C., Mendivil, F., Molter, U., Shonkwiler, R., On the h-hausdorff measure of cantor sets (2004) Pacific J.Math, 217 (1), pp. 45-59. , http://dx.doi.org/10.2140/pjm.2004.217.45
  • Falconer, K.J., (1990) Fractal Geometry: Mathematical Foundations And Applications, , JohnWiley Sons Chichester
  • (1997) Techniques in Fractal Geometry, , JohnWiley Sons Chichester
  • Feng, D.-J., Exact packing measure of linear cantor sets (2003) Math.Nachr., 248, pp. 102-109. , http://dx.doi.org/10.1002/mana.200310006
  • Feng, D.-J., Hua, S., Wen, Z., The pointwise densities of the cantor measure (2000) J.Math.Anal.Appl, 250 (2), pp. 692-705. , http://dx.doi.org/10.1006/jmaa.2000.7137
  • Garcia, I., Molter, U., Scotto, R., Dimension functions of cantor sets (2007) Proc.Amer.Math.Soc, 135 (10), pp. 3151-3161. , http://dx.doi.org/10.1090/S0002-9939-07-09019-3, electronic
  • He, C.Q., Lapidus, M.L., Generalized minkowski content, spectrum of fractal drums, fractal strings and the riemann zeta-function (1997) Mem.Amer.Math.Soc, 127 (608)
  • Joyce, H., Preiss, D., On the existence of subsets of finite positive packing measure (1995) Mathematika, 42 (1), pp. 15-24. , http://dx.doi.org/10.1112/S002557930001130X
  • Larman, D.G., On hausdorff measure in finite-dimensional compact metric spaces (1967) Proc.London Math.Soc, 17, pp. 193-206. , http://dx.doi.org/10.1112/plms/s3-17.2.193
  • Lapidus, L., Van Frankenhuijsen, M., (2006) Fractal Geometry Complex Dimensions Zeta Functions Geometry and Spectra of Fractal Strings, , Springer New York
  • Peetre, J., Concave majorants of positive functions (1970) Acta Math.Acad.Sci.Hungar, 21, pp. 327-333. , http://dx.doi.org/10.1007/BF01894779
  • Rogers, C.A., (1970) Hausdorff Measures, 1998. , Reprint Of The Original Cambridge University Press Cambridge
  • Taylor, J., Tricot, C., Packing measure and its evaluation for a brownian path (1985) Trans.Amer.Math.Soc, 288 (2), pp. 679-699. , http://dx.doi.org/10.1090/S0002-9947-1985-0776398-8
  • Tricot, C., Two definitions of fractional dimension (1982) Math.Proc.Camb.Philos.Soc, 91 (1), pp. 57-74. , http://dx.doi.org/10.1017/S0305004100059119
  • Wen, S., Wen, Z., Some properties of packing measure with doubling gauge (2004) Studia Math, 165 (2), pp. 125-134. , http://dx.doi.org/10.4064/sm165-2-3
  • Xiong, Y., Wu, M., Category and dimensions for cut-out sets (2009) J.Math.Anal.Appl, 358 (1), pp. 125-135. , http://dx.doi.org/10.1016/j.jmaa.2009.04.057

Citas:

---------- APA ----------
Hare, K.E., Mendivil, F. & Zuberman, L. (2013) . The sizes of rearrangements of cantor sets. Canadian Mathematical Bulletin, 56(2), 354-365.
http://dx.doi.org/10.4153/CMB-2011-167-7
---------- CHICAGO ----------
Hare, K.E., Mendivil, F., Zuberman, L. "The sizes of rearrangements of cantor sets" . Canadian Mathematical Bulletin 56, no. 2 (2013) : 354-365.
http://dx.doi.org/10.4153/CMB-2011-167-7
---------- MLA ----------
Hare, K.E., Mendivil, F., Zuberman, L. "The sizes of rearrangements of cantor sets" . Canadian Mathematical Bulletin, vol. 56, no. 2, 2013, pp. 354-365.
http://dx.doi.org/10.4153/CMB-2011-167-7
---------- VANCOUVER ----------
Hare, K.E., Mendivil, F., Zuberman, L. The sizes of rearrangements of cantor sets. Can. Math. Bull. 2013;56(2):354-365.
http://dx.doi.org/10.4153/CMB-2011-167-7